107 resultados para Venous Thromboembolism
Resumo:
Introduction Axillary web syndrome (AWS) can result in early post-operative and long-term difficulties following lymphadenectomy for cancer and should be recognised by clinicians. This systematic review was conducted to synthesise information on AWS clinical presentation and diagnosis, frequency, natural progression, grading, pathoaetiology, risk factors, symptoms, interventions and outcomes. Methods Electronic searches were conducted using Cochrane, Pubmed, MEDLINE, CINAHL, EMBASE, AMED, PEDro and Google Scholar until June 2013. The methodological quality of included studies was determined using the Downs and Black checklist. Narrative synthesis of results was undertaken. Results Thirty-seven studies with methodological quality scores ranging from 11 to 26 on a 28-point scale were included. AWS diagnosis relies on inspection and palpation; grading has not been validated. AWS frequency was reported in up to 85.4 % of patients. Biopsies identified venous and lymphatic pathoaetiology with five studies suggesting lymphatic involvement. Twenty-one studies reported AWS occurrence within eight post-operative weeks, but late occurrence of greater than 3 months is possible. Pain was commonly reported with shoulder abduction more restricted than flexion. AWS symptoms usually resolve within 3 months but may persist. Risk factors may include extensiveness of surgery, younger age, lower body mass index, ethnicity and healing complications. Low-quality studies suggest that conservative approaches including analgesics, non-steroidal anti-inflammatory drugs and/or physiotherapy may be safe and effective for early symptom reduction. Conclusions AWS appears common. Current evidence for the treatment of AWS is insufficient to provide clear guidance for clinical practice. Implications for Cancer Survivors Cancer survivors should be informed about AWS. Further investigation is needed into pathoaetiology, long-term outcomes and to determine effective treatment using standardised outcomes.
Resumo:
How blood was able to reach the heads of the long-necked sauropod dinosaurs has long been a matter of debate and several hypotheses have been presented. For example, it has been proposed that sauropods had exceptionally large hearts, multiple ‘normal’ sized hearts spaced at regular intervals up the neck or held their necks horizontal, or that the siphon effect was in operation. By means of an experimental model, we demonstrate that the siphon principle is able to explain how blood was able to adequately perfuse the sauropod brain. The return venous circulation may have been protected from complete collapse by a structure akin to the vertebral venous plexus. We derive an equation relating neck height and mean arterial pressure, which indicates that with a mean arterial pressure similar to that of the giraffe, the maximum safe vertical distance between heart and head would have been about 12 m. A hypothesis is presented that the maximum neck length in the fossil record is due to the siphon height limit. The equation indicates that to migrate over high ground, sauropods would have had to either significantly increase their mean arterial pressure or keep their necks below a certain height dependent on altitude.