196 resultados para URQUIZA, JUSTO JOSE DE


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents a new multi-scale place recognition system inspired by the recent discovery of overlapping, multi-scale spatial maps stored in the rodent brain. By training a set of Support Vector Machines to recognize places at varying levels of spatial specificity, we are able to validate spatially specific place recognition hypotheses against broader place recognition hypotheses without sacrificing localization accuracy. We evaluate the system in a range of experiments using cameras mounted on a motorbike and a human in two different environments. At 100% precision, the multiscale approach results in a 56% average improvement in recall rate across both datasets. We analyse the results and then discuss future work that may lead to improvements in both robotic mapping and our understanding of sensory processing and encoding in the mammalian brain.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper we present a novel place recognition algorithm inspired by recent discoveries in human visual neuroscience. The algorithm combines intolerant but fast low resolution whole image matching with highly tolerant, sub-image patch matching processes. The approach does not require prior training and works on single images (although we use a cohort normalization score to exploit temporal frame information), alleviating the need for either a velocity signal or image sequence, differentiating it from current state of the art methods. We demonstrate the algorithm on the challenging Alderley sunny day – rainy night dataset, which has only been previously solved by integrating over 320 frame long image sequences. The system is able to achieve 21.24% recall at 100% precision, matching drastically different day and night-time images of places while successfully rejecting match hypotheses between highly aliased images of different places. The results provide a new benchmark for single image, condition-invariant place recognition.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An important aspect of robotic path planning for is ensuring that the vehicle is in the best location to collect the data necessary for the problem at hand. Given that features of interest are dynamic and move with oceanic currents, vehicle speed is an important factor in any planning exercises to ensure vehicles are at the right place at the right time. Here, we examine different Gaussian process models to find a suitable predictive kinematic model that enable the speed of an underactuated, autonomous surface vehicle to be accurately predicted given a set of input environmental parameters.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents the theory and practice of the Futures Action Model (FAM). FAM has been in development for over a decade, in a number of contexts and iterations. It is a creative methodology that uses a variety of concepts and tools to guide participants through the conception and modeling of enterprises, services, social innovations and projects in the context of emerging futures. It is used to generate strategic options that people can utilise to build opportunities for value creation as they move into the future. This paper details examples in its development, and provides theoretical and practical guidelines for educators and business facilitators to use the FAM system in their own workplaces.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Introduction The culture in many team sports involves consumption of large amounts of alcohol after training/competition. The effect of such a practice on recovery processes underlying protein turnover in human skeletal muscle are unknown. We determined the effect of alcohol intake on rates of myofibrillar protein synthesis (MPS) following strenuous exercise with carbohydrate (CHO) or protein ingestion. Methods In a randomized cross-over design, 8 physically active males completed three experimental trials comprising resistance exercise (8×5 reps leg extension, 80% 1 repetition maximum) followed by continuous (30 min, 63% peak power output (PPO)) and high intensity interval (10×30 s, 110% PPO) cycling. Immediately, and 4 h post-exercise, subjects consumed either 500 mL of whey protein (25 g; PRO), alcohol (1.5 g·kg body mass−1, 12±2 standard drinks) co-ingested with protein (ALC-PRO), or an energy-matched quantity of carbohydrate also with alcohol (25 g maltodextrin; ALC-CHO). Subjects also consumed a CHO meal (1.5 g CHO·kg body mass−1) 2 h post-exercise. Muscle biopsies were taken at rest, 2 and 8 h post-exercise. Results Blood alcohol concentration was elevated above baseline with ALC-CHO and ALC-PRO throughout recovery (P<0.05). Phosphorylation of mTORSer2448 2 h after exercise was higher with PRO compared to ALC-PRO and ALC-CHO (P<0.05), while p70S6K phosphorylation was higher 2 h post-exercise with ALC-PRO and PRO compared to ALC-CHO (P<0.05). Rates of MPS increased above rest for all conditions (~29–109%, P<0.05). However, compared to PRO, there was a hierarchical reduction in MPS with ALC-PRO (24%, P<0.05) and with ALC-CHO (37%, P<0.05). Conclusion We provide novel data demonstrating that alcohol consumption reduces rates of MPS following a bout of concurrent exercise, even when co-ingested with protein. We conclude that alcohol ingestion suppresses the anabolic response in skeletal muscle and may therefore impair recovery and adaptation to training and/or subsequent performance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Density functional calculations of the electronic band structure for superconducting and semi-conducting metal hexaborides are compared using a consistent suite of assumptions and with emphasis on the physical implications of computed models. Spin polarization enhances mathematical accuracy of the functional approximations and adds significant physical meaning to model interpretation. For YB6 and LaB6, differences in alpha and beta projections occur near the Fermi energy. These differences are pronounced for superconducting hexaborides but do not occur for other metal hexaborides.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper we describe the approaches adopted to generate the five runs submitted to ImageClefPhoto 2009 by the University of Glasgow. The aim of our methods is to exploit document diversity in the rankings. All our runs used text statistics extracted from the captions associated to each image in the collection, except one run which combines the textual statistics with visual features extracted from the provided images. The results suggest that our methods based on text captions significantly improve the performance of the respective baselines, while the approach that combines visual features with text statistics shows lower levels of improvements.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, we consider the problem of document ranking in a non-traditional retrieval task, called subtopic retrieval. This task involves promoting relevant documents that cover many subtopics of a query at early ranks, providing thus diversity within the ranking. In the past years, several approaches have been proposed to diversify retrieval results. These approaches can be classified into two main paradigms, depending upon how the ranks of documents are revised for promoting diversity. In the first approach subtopic diversification is achieved implicitly, by choosing documents that are different from each other, while in the second approach this is done explicitly, by estimating the subtopics covered by documents. Within this context, we compare methods belonging to the two paradigms. Furthermore, we investigate possible strategies for integrating the two paradigms with the aim of formulating a new ranking method for subtopic retrieval. We conduct a number of experiments to empirically validate and contrast the state-of-the-art approaches as well as instantiations of our integration approach. The results show that the integration approach outperforms state-of-the-art strategies with respect to a number of measures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ranking documents according to the Probability Ranking Principle has been theoretically shown to guarantee optimal retrieval effectiveness in tasks such as ad hoc document retrieval. This ranking strategy assumes independence among document relevance assessments. This assumption, however, often does not hold, for example in the scenarios where redundancy in retrieved documents is of major concern, as it is the case in the sub–topic retrieval task. In this chapter, we propose a new ranking strategy for sub–topic retrieval that builds upon the interdependent document relevance and topic–oriented models. With respect to the topic– oriented model, we investigate both static and dynamic clustering techniques, aiming to group topically similar documents. Evidence from clusters is then combined with information about document dependencies to form a new document ranking. We compare and contrast the proposed method against state–of–the–art approaches, such as Maximal Marginal Relevance, Portfolio Theory for Information Retrieval, and standard cluster–based diversification strategies. The empirical investigation is performed on the ImageCLEF 2009 Photo Retrieval collection, where images are assessed with respect to sub–topics of a more general query topic. The experimental results show that our approaches outperform the state–of–the–art strategies with respect to a number of diversity measures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this paper is to investigate the role of emotion features in diversifying document rankings to improve the effectiveness of Information Retrieval (IR) systems. For this purpose, two approaches are proposed to consider emotion features for diversification, and they are empirically tested on the TREC 678 Interactive Track collection. The results show that emotion features are capable of enhancing retrieval effectiveness.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

For TREC Crowdsourcing 2011 (Stage 2) we propose a networkbased approach for assigning an indicative measure of worker trustworthiness in crowdsourced labelling tasks. Workers, the gold standard and worker/gold standard agreements are modelled as a network. For the purpose of worker trustworthiness assignment, a variant of the PageRank algorithm, named TurkRank, is used to adaptively combine evidence that suggests worker trustworthiness, i.e., agreement with other trustworthy co-workers and agreement with the gold standard. A single parameter controls the importance of co-worker agreement versus gold standard agreement. The TurkRank score calculated for each worker is incorporated with a worker-weighted mean label aggregation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper we define two models of users that require diversity in search results; these models are theoretically grounded in the notion of intrinsic and extrinsic diversity. We then examine Intent-Aware Expected Reciprocal Rank (ERR-IA), one of the official measures used to assess diversity in TREC 2011-12, with respect to the proposed user models. By analyzing ranking preferences as expressed by the user models and those estimated by ERR-IA, we investigate whether ERR-IA assesses document rankings according to the requirements of the diversity retrieval task expressed by the two models. Empirical results demonstrate that ERR-IA neglects query-intents coverage by attributing excessive importance to redundant relevant documents. ERR-IA behavior is contrary to the user models that require measures to first assess diversity through the coverage of intents, and then assess the redundancy of relevant intents. Furthermore, diversity should be considered separately from document relevance and the documents positions in the ranking.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the field of information retrieval (IR), researchers and practitioners are often faced with a demand for valid approaches to evaluate the performance of retrieval systems. The Cranfield experiment paradigm has been dominant for the in-vitro evaluation of IR systems. Alternative to this paradigm, laboratory-based user studies have been widely used to evaluate interactive information retrieval (IIR) systems, and at the same time investigate users’ information searching behaviours. Major drawbacks of laboratory-based user studies for evaluating IIR systems include the high monetary and temporal costs involved in setting up and running those experiments, the lack of heterogeneity amongst the user population and the limited scale of the experiments, which usually involve a relatively restricted set of users. In this paper, we propose an alternative experimental methodology to laboratory-based user studies. Our novel experimental methodology uses a crowdsourcing platform as a means of engaging study participants. Through crowdsourcing, our experimental methodology can capture user interactions and searching behaviours at a lower cost, with more data, and within a shorter period than traditional laboratory-based user studies, and therefore can be used to assess the performances of IIR systems. In this article, we show the characteristic differences of our approach with respect to traditional IIR experimental and evaluation procedures. We also perform a use case study comparing crowdsourcing-based evaluation with laboratory-based evaluation of IIR systems, which can serve as a tutorial for setting up crowdsourcing-based IIR evaluations.