218 resultados para Transgenic plant
Resumo:
We are aware of global concerns of sustainability and are encouraged on many fronts to modify our behaviour to save the planet but sometimes this understanding is more intellectual than motivated. An opportunity was identified within the university environment to activate a pilot study to investigate the level of voluntary student engagement in saving energy if a plant/digital interface were introduced. We postulate that people may be more inclined to participate in a "green" activity if they are more directly aware of the benefits. This project also seeks to discover if the introduction of nature (green plants) as the interface would encourage users to increase participation in socially responsive activities. Using plants as the interface offers an immediate sensory connection between the participants and the outcome of their chosen actions. This may generate a deeper awareness of the environment by enabling the participant to realise that their one small action in an ordinary day can contribute positively to larger global issues.
Resumo:
This paper presents a novel power control strategy that decouples the active and reactive power for a synchronous generator connected to a power network. The proposed control paradigm considers the capacitance of the transmission line along with its resistance and reactance as-well. Moreover the proposed controller takes into account all cases of R-X relationships, thus allowing it to function in Virtual Power Plant (VPP) structures which operate at both medium voltage (MV) and low voltage (LV) levels. The independent control of active and reactive power is achieved through rotational transformations of the terminal voltages and currents at the synchronous generator's output. This paper details the control technique by first presenting the mathematical and electrical network analysis of the methodology and then successfully implementing the control using MATLAB-SIMULINK simulation.
Resumo:
The larvae of particular Ogmograptis spp. produce distinctive scribbles on some smooth-barked Eucalyptus spp. which are a common feature on many ornamental and forest trees in Australia. However, although they are conspicuous in the environment the systematics and biology of the genus has been poorly studied. This has been addressed through detailed field and laboratory studies of their biology of three species (O. racemosa Horak sp. nov., O. fraxinoides Horak sp. nov., O. scribula Meyrick), in conjunction with a comprehensive taxonomic revision support by a molecular phylogeny utilising the mitochondrial Cox1 and nuclear 18S genes. In brief, eggs are laid in bark depressions and the first instar larvae bore into the bark to the level where the future cork cambium forms (the phellegen). Early instar larvae bore wide, arcing tracks in this layer before forming a tighter zig-zag shaped pattern. The second last instar turns and bores either closely parallel to the initial mine or doubles its width, along the zig-zag shaped mine. The final instar possesses legs and a spinneret (unlike the earlier instars) and feeds exclusively on callus tissue which forms within the zig-zag shaped mine formed by the previous instar, before emerging from the bark to pupate at the base of the tree. The scars of mines them become visible scribble following the shedding of bark. Sequence data confirm the placement of Ogmograptis within the Bucculatricidae, suggest that the larvae responsible for the ‘ghost scribbles’ (unpigmented, raised scars found on smooth-barked eucalypts) are members of the genus Tritymba, and support the morphology-based species groups proposed for Ogmograptis. The formerly monotypic genus Ogmograptis Meyrick is revised and divided into three species groups. Eleven new species are described: Ogmograptis fraxinoides Horak sp. nov., Ogmograptis racemosa Horak sp. nov. and Ogmograptis pilularis Horak sp. nov. forming the scribula group with Ogmograptis scribula Meyrick; Ogmograptis maxdayi Horak sp. nov., Ogmograptis barloworum Horak sp. nov., Ogmograptis paucidentatus Horak sp. nov., Ogmograptis rodens Horak sp. nov., Ogmograptis bignathifer Horak sp. nov. and Ogmograptis inornatus Horak sp. nov. as the maxdayi group; Ogmograptis bipunctatus Horak sp. nov., Ogmograptis pulcher Horak sp. nov., Ogmograptis triradiata (Turner) comb. nov. and Ogmograptis centrospila (Turner) comb. nov. as the triradiata group. Ogmograptis notosema (Meyrick) cannot be assigned to a species group as the holotype has not been located. Three unique synapomorphies, all derived from immatures, redefine the family Bucculatricidae, uniting Ogmograptis, Tritymba Meyrick (both Australian) and Leucoedemia Scoble & Scholtz (African) with Bucculatrix Zeller, which is the sister group of the southern hemisphere genera. The systematic history of Ogmograptis and the Bucculatricidae is discussed.
Resumo:
Detailed mineralogical studies of the matrix and fracture-fill materials of a large number of samples from the Rustler Formation have been carried out using x-ray diffraction, high-resolution transmission electron microscopy, electron microprobe analysis, x-ray fluorescence, and atomic absorption spectrophotometry. These analyses indicate the presence of four clay minerals: interstratified chlorite/saponite, illite, chlorite, and serpentine. Corrensite (regularly stratified chlorite/saponite) is the dominant clay mineral in samples from the Culebra dolomite and two shale layers of the lower unnamed member of the Rustler Formation. Within other layers of the Rustler Formation, disordered mixed chlorite/saponite is usually the most abundant clay mineral. Studies of the morphology and composition of clay crystallites suggest that the corrensite was formed by the alteration of detrital dioctahedral smectite in magnesium-rich pore fluids during early diagenesis of the Rustler Formation. This study provides initial estimates of the abundance and nature of the clay minerals in the Culebra dolomite in the vicinity of the Waste Isolation Pilot Plant.
Resumo:
Sclerotinia sclerotiorum is a necrotrophic ascomycete fungus with an extremely broad host range. This pathogen produces the non-specific phytotoxin and key pathogenicity factor, oxalic acid (OA). Our recent work indicated that this fungus and more specifically OA, can induce apoptotic-like programmed cell death (PCD) in plant hosts, this induction of PCD and disease requires generation of reactive oxygen species (ROS) in the host, a process triggered by fungal secreted OA. Conversely, during the initial stages of infection, OA also dampens the plant oxidative burst, an early host response generally associated with plant defense. This scenario presents a challenge regarding the mechanistic details of OA function; as OA both suppresses and induces host ROS during the compatible interaction. In the present study we generated transgenic plants expressing a redox-regulated GFP reporter. Results show that initially, Sclerotinia (via OA) generates a reducing environment in host cells that suppress host defense responses including the oxidative burst and callose deposition, akin to compatible biotrophic pathogens. Once infection is established however, this necrotroph induces the generation of plant ROS leading to PCD of host tissue, the result of which is of direct benefit to the pathogen. In contrast, a non-pathogenic OA-deficient mutant failed to alter host redox status. The mutant produced hypersensitive response-like features following host inoculation, including ROS induction, callose formation, restricted growth and cell death. These results indicate active recognition of the mutant and further point to suppression of defenses by the wild type necrotrophic fungus. Chemical reduction of host cells with dithiothreitol (DTT) or potassium oxalate (KOA) restored the ability of this mutant to cause disease. Thus, Sclerotinia uses a novel strategy involving regulation of host redox status to establish infection. These results address a long-standing issue involving the ability of OA to both inhibit and promote ROS to achieve pathogenic success.
Resumo:
We develop a general theoretical framework for exploring the host plant selection behaviour of herbivorous insects. This model can be used to address a number of questions, including the evolution of specialists, generalists, preference hierarchies, and learning. We use our model to: (i) demonstrate the consequences of the extent to which the reproductive success of a foraging female is limited by the rate at which they find host plants (host limitation) or the number of eggs they carry (egg limitation); (ii) emphasize the different consequences of variation in behaviour before and after landing on (locating) a host (termed pre- and post-alighting, respectively); (iii) show that, in contrast to previous predictions, learning can be favoured in post-alighting behaviour--in particular, individuals can be selected to concentrate oviposition on an abundant low-quality host, whilst ignoring a rare higher-quality host; (iv) emphasize the importance of interactions between mechanisms in favouring specialization or learning.
Resumo:
The polyphagous moth Helicoverpa armigera (Hübner) is one of the world's most important agricultural pests. A number of existing approaches and future designs for management of H. armigera rely on the assumption that moths do not exhibit either genetically and/or non-genetically based variation for host plant utilization. We review recent empirical evidence demonstrating that both these forms of variation influence host plant use in this moth. The significance of this variation in H. armigera in relation to current and future pest management strategies is examined. We provide recommendations on future research needs and directions for sustainable management of H. armigera, under a framework that includes consideration of intra-specific variation for host use relevant in this and other similar pest species.
Resumo:
Learning can allow individuals to increase their fitness in particular environments. The advantage to learning depends on the predictability of the environment and the extent to which animals can adjust their behaviour. Earlier general models have investigated when environmental predictability might favour the evolution of learning in foraging animals. Here, we construct a theoretical model that predicts the advantages to learning using a specific biological example: oviposition in the Lepidoptera. Our model includes environmental and behavioural complexities relevant to host selection in these insects and tests whether the predictions of the general models still hold. Our results demonstrate how the advantage of learning is maximised when within-generation variability is minimised (the local environment consists mainly of a single host plant species) and between-generation variability is maximised (different host plant species are the most common in different generations). We discuss how our results: (a) can be applied to recent empirical work in different lepidopteran species and (b) predict an important role of learning in lepidopteran agricultural pests.
Resumo:
Cotton growing landscapes in Australia have been dominated by dual-toxin transgenic Bt varieties since 2004. The cotton crop has thus effectively become a sink for the main target pest, Helicoverpa armigera. Theory predicts that there should be strong selection on female moths to avoid laying on such plants. We assessed oviposition, collected from two cotton-growing regions, by female moths when given a choice of tobacco, cotton and cabbage. Earlier work in the 1980s and 1990s on populations from the same geographic locations indicated these hosts were on average ranked as high, mid and low preference plants, respectively, and that host rankings had a heritable component. In the present study, we found no change in the relative ranking of hosts by females, with most eggs being laid on tobacco, then cotton and least on cabbage. As in earlier work, some females laid most eggs on cotton and aspects of oviposition behaviour had a heritable component. Certainly, cotton is not avoided as a host, and the implications of these finding for managing resistance to Bt cotton are discussed.
Resumo:
Plant and machinery valuation is important to every company.s annual financial reporting. It is reported under the non-current assets section, and the valuers are generally employed to provide the up to date valuation of the non-current assets valuation such as property, plant and equipment that can make up to 80% of the total assets of a company. The valuation of plant and machinery is also important for other purposes such as securing loan facilities, sales, takeover, insurance and auction. The application of 2005 International Financial Reporting Standard (IFRS) has a subsequent impact on the financial sector, as a whole. The accountants have to choose between the Historical Cost approach and Market Value approach in determining the value of the client.s assets. In Malaysia, the implementation of IFRS has a domino effect on the financial system, especially for plant and machinery valuation for financial reporting. The comparison data for plant and machinery valuation is limited unlike land and building valuation. The question of Malaysian valuer.s ability to comply with the IFRS standard keeps rising every day, not just to the accountants, but also other related parties such as financial institutions, government agencies and the clients. This is happening because of different interpretations of premise of value for plant and machinery, as well as methods been used and differences in standards of reporting among the valuers conducting plant and machinery valuation. The root of the problem lies in the lack of practical guidelines governing plant and machinery valuation practices and different schools of thought among the valuers. Some follow the United Kingdom.s RICS guidelines, whilst some valuers are more comfortable with the United State.s USPAP rules, especially on the premise of value. This research is to investigate the international best practices of plant and machinery valuation and to establish the common valuation concept, awareness and application of valuation methodology and valuation process for plant and machinery valuation in Malaysia. This research uses a combination of the qualitative and quantitative research approach. In the qualitative approach, the content analyses were conducted from the international practices and current Malaysian implementation of plant and machinery valuation. A survey (quantitative approach) via questionnaire was implemented among the registered and probationary valuers in Malaysia to investigate their understanding and opinion relating to plant and machinery valuation based on the current practices. The significance of this research is the identification of international plant and machinery practices and the understanding of current practices of plant and machinery valuation in Malaysia. It is found that issues embedding plant and machinery valuation practices are limited numbers of resources available either from scholars or practitioner. This is supported by the general finding from the research survey that indicates that there are immediate needs for practical notes or guidelines to be developed and implemented to support the Malaysian valuers practising plant and machinery valuation. This move will lead to a better understanding of plant and machinery valuation, reducing discrepancies in valuation of plant and machinery and increased accuracy among practising valuers.
Resumo:
Bananas (Musa sp) are one of the most important food crops in the world and provide a staple food and source of income in many households especially in Africa. Diseases are a major constraint to production with bunchy top, caused by Banana bunchy top virus (BBTV) generally considered the most important virus disease of bananas worldwide. Of the fungal diseases, Fusarium wilt, caused by the Fusarium oxysporum f.sp cubense (Foc), and black Sigatoka, caused by Mycosphaerella fijiensis, are arguably two of the most important and cause significant yield losses. The low fertility of commercially important banana cultivars has hampered efforts to generate disease resistance using conventional breeding. Possible alternative strategies to generate or increase disease resistance are through genetic engineering or by manipulation of the innate plant defence mechanisms, namely systemic acquired resistance (SAR). The first research component of this thesis describes attempts to generate BBTV-resistant banana plants using a genetic modification approach. The second research component of the thesis focused on the identification of a potential marker gene associated with SAR in banana plants and a comparison of the expression levels of the marker gene in response to biotic and abiotic stresses, and chemical inducers. Previous research at QUT CTCB showed that replication of BBTV DNA components in banana embryogenic cell suspensions (ECS) was abolished following co-bombardment with 1.1mers of mutated BBTV DNA-R. BBTV DNA-R encodes the master replication protein (Rep) and is the only viral protein essential for BBTV replication. In this study, ECS of banana were stably transformed with the same constructs, each containing a different mutation in BBTV DNA-R, namely H41G, Y79F and K187M, to examine the effect on virus replication in stably transformed plants. Cells were also transformed with a construct containing a native BBTV Rep. A total of 16, 16, 11 and five lines of stably transformed banana plants containing the Y79F, H41G, K187M and native Rep constructs, respectively, were generated. Of these, up to nine replicates from Y79F lines, four H41G lines, seven K187M lines and three native Rep lines were inoculated with BBTV by exposure to viruliferous aphids in two separate experiments. At least one replicate from each of the nine Y79F lines developed typical bunchy top symptoms and all tested positive for BBTV using PCR. Of the four H41G lines tested, at least one replicate from three of the lines showed symptoms of bunchy top and tested positive using PCR. However, none of the five replicates of one H41G line (H41G-3) developed symptoms of bunchy top and none of the plants tested positive for BBTV using PCR. Of the seven K187M lines, at least one replicate of all lines except one (K187M-1) developed symptoms of bunchy top and tested positive for BBTV. Importantly, none of the four replicates of line K187M-1 showed symptoms or tested positive for BBTV. At least one replicate from each of the three native Rep lines developed symptoms and tested positive for BBTV. The H41G-3 and K187M-1 lines possibly represent the first transgenic banana plants generated using a mutated Rep strategy. The second research component of this thesis focused on the identification of SAR-associated genes in banana and their expression levels in response to biotic and abiotic stresses and chemical inducers. The impetus for this research was the observation that tissue-cultured (TC) banana plants were more susceptible to Fusarium wilt disease (and possibly bunchy top disease) than plants grown from field-derived suckers, possibly due to decreased levels of SAR gene expression in the former. In this study, the pathogenesis-related protein 1 (PR-1) gene was identified as a potential marker for SAR gene expression in banana. A quantitative real-time PCR assay was developed and optimised in order to determine the expression of PR-1, with polyubiquitin (Ubi-1) found to be the most suitable reference gene to enable relative quantification. The levels of PR-1 expression were subsequently compared in Lady Finger and Cavendish (cv. Williams) banana plants grown under three different environmental conditions, namely in the field, the glass house and in tissue-culture. PR-1 was shown to be expressed in both cultivars growing under different conditions. While PR-1 expression was highest in the field grown bananas and lowest in the TC bananas in Lady Finger cultivar, this was not the case in the Cavendish cultivar with glass house plants exhibiting the lowest PR-1 expression compared with tissue culture and field grown plants. The important outcomes of this work were the establishment of a qPCR-based assay to monitor PR-1 expression levels in banana and a preliminary assessment of the baseline PR-1 expression levels in two banana cultivars under three different growing conditions. After establishing the baseline PR-1 expression levels in Cavendish bananas, a study was done to determine whether PR-1 levels could be increased in these plants by exposure to known banana pathogens and non-pathogens, and a known chemical inducer of SAR. Cavendish banana plants were exposed to pathogenic Foc subtropical race 4 (FocSR4) and non-pathogenic Foc race 1 (Foc1), as well as two putative inducers of resistance, Fusarium lycopersici (Fol) and the chemical, acibenzolar-S-methyl (BION®). Tissue culture bananas were acclimatised under either glass house (TCS) or field (TCH) conditions and treatments were carried out in a randomised complete block design. PR-1 expression was determined using qPCR for both TCS and TCH samples for the period 12-72h post-exposure. Treatment of TCH plants using Foc1 and FocSR4 resulted in 120 and 80 times higher PR-1 expression than baseline levels, respectively. For TCS plants treated with Foc1, PR-1 expression was 30 times higher than baseline levels at 12h post-exposure, while TCS plants treated with FocSR4 showed the highest PR-1 expression (20 times higher than baseline levels) at 72h post-exposure. Interestingly, when TCS plants were treated with Fol there was a marked increase of PR-1 expression at 12 h and 48 h following treatment which was 4 and 8 times higher than the levels observed when TCS plants were treated with Foc1 and FocSR4, respectively. In contrast, when TCH plants were treated with Fol only a slight increase in PR-1 expression was observed at 12 h, which eventually returned to baseline levels. Exposure of both TCS and TCH plants to BION® resulted in no effect on PR-1 expression levels at any time-point. The major outcome of the SAR study was that the glass house acclimatised tissue culture bananas exhibited lower PR-1 gene expression compared to field acclimatised tissue culture plants and the identification of Fol as a good candidate for SAR induction in banana plants exhibiting low PR-1 levels. A number of outcomes that foster understanding of both pathogen-derived and plant innate resistance strategies in order to potentially improve banana resistance to diseases were explored in this study and include identification of potential inducers of systemic acquired resistance and a promising mutated Rep approach for BBTV resistance. The work presented in this thesis is the first report on the generation of potential BBTV resistant bananas using the mutated Rep approach. In addition, this is the first report on the status of SAR in banana grown under different conditions of exposure to the biotic and abiotic environment. Further, a robust qPCR assay for the study of gene expression using banana leaf samples was developed and a potential inducer of SAR in tissue culture bananas identified which could be harnessed to increase resistance in tissue culture bananas.
Resumo:
This article provides a general overview of some of the plant research being conducted by a number of researchers at the Queensland University of Technology (QUT) Brisbane. Details about student projects and research facilities have been limited to those of relevance to plant structure and systematics. Academics, technicians and research students involved in plant research are in the Faculty of Science and Engineering, mainly in the School of Earth, Environment and Biological Sciences (EEBS), with a few exceptions. Our offices and laboratories are housed in a number of different buildings at the Gardens Point campus (e.g., P, Q, R, S, M Blocks) and we have strong collaborative links with Queensland Herbarium (BRI) and Mt Coot-tha Botanic Gardens.
Resumo:
Plant growth can be limited by resource acquisition and defence against consumers, leading to contrasting trade-off possibilities. The competition-defence hypothesis posits a trade-off between competitive ability and defence against enemies (e.g. herbivores and pathogens). The growth-defence hypothesis suggests that strong competitors for nutrients are also defended against enemies, at a cost to growth rate. We tested these hypotheses using observations of 706 plant populations of over 500 species before and following identical fertilisation and fencing treatments at 39 grassland sites worldwide. Strong positive covariance in species responses to both treatments provided support for a growth-defence trade-off: populations that increased with the removal of nutrient limitation (poor competitors) also increased following removal of consumers. This result held globally across 4 years within plant life-history groups and within the majority of individual sites. Thus, a growth-defence trade-off appears to be the norm, and mechanisms maintaining grassland biodiversity may operate within this constraint.