149 resultados para Thermo-oxidative degradation
Resumo:
Transition zones between bridge decks and rail tracks suffer early failure due to poor interaction between rail vehicles and sudden changes of stiffness. This has been an ongoing problem to rail industry and yet still no systematic studies appear to have been taken to maintain a gradually smoothening transmission of forces between the bridge and its approach. Differential settlement between the bridge deck and rail track in the transition zone is the fundamental issue, which negatively impacts the rail industry by causing passenger discomfort, early damage to infrastructure and vehicle components, speed reduction, and frequent maintenance cycles. Identification of mechanism of the track degradation and factors affecting is imperative to design any mitigation method for reducing track degradation rate at the bridge transition zone. Unfortunately this issue is still not well understood, after conducting a numbers of reviews to evaluate the key causes, and introducing a wide range of mitigation techniques. In this study, a comprehensive analysis of the available literature has been carried out to develop either a novel design framework or a mitigation technique for the bridge transition zone. This paper addresses three critical questions in relation to the track degradation at transition zone: (1) what are the causes of bridge transition track degradation?; (2) what are the available mitigation techniques in reducing the track degradation rate?; (3) what are the factors affecting on poor performance of the existing mitigation techniques?. It is found that the absence of soil-water response, dynamic loading response, and behaviour of geotechnical characteristics under long-term conditions in existing track transition design frameworks critically influence on the failures of existing mitigation techniques. This paper also evaluates some of the existing design frameworks to identify how each design framework addresses the track degradation at the bridge transition zone.
Resumo:
RATIONALE: Polymer-based surface coatings in outdoor applications experience accelerated degradation due to exposure to solar radiation, oxygen and atmospheric pollutants. These deleterious agents cause undesirable changes to the aesthetic and mechanical properties of the polymer, reducing its lifetime. The use of antioxidants such as hindered amine light stabilisers (HALS) retards these degradative processes; however, mechanisms for HALS action and polymer degradation are poorly understood. METHODS: Detection of the HALS TINUVINW123 (bis(1-octyloxy-2,2,6,6-tetramethyl-4-piperidyl) sebacate) and the polymer degradation products directly from a polyester-based coil coating was achieved by liquid extraction surface analysis (LESA) coupled to a triple quadrupole QTRAPW 5500 mass spectrometer. The detection of TINUVINW123 and melamine was confirmed by the characteristic fragmentation pattern observed in LESA-MS/MS spectra that was identical to that reported for authentic samples. RESULTS: Analysis of an unstabilised coil coating by LESA-MS after exposure to 4 years of outdoor field testing revealed the presence of melamine (1,3,5-triazine-2,4,6-triamine) as a polymer degradation product at elevated levels. Changes to the physical appearance of the coil coating, including powder-like deposits on the coating's surface, were observed to coincide with melamine deposits and are indicative of the phenomenon known as polymer ' blooming'. CONCLUSIONS: For the first time, in situ detection of analytes from a thermoset polymer coating was accomplished without any sample preparation, providing advantages over traditional extraction-analysis approaches and some contemporary ambient MS methods. Detection of HALS and polymer degradation products such as melamine provides insight into the mechanisms by which degradation occurs and suggests LESA-MS is a powerful new tool for polymer analysis. Copyright (C) 2012 John Wiley & Sons, Ltd.
Resumo:
While applications of amine oxidases are increasing, few have been characterised and our understanding of their biological role and strategies for bacteria exploitation are limited. By altering the nitrogen source (NH4Cl, putrescine and cadaverine (diamines) and butylamine (monoamine)) and concentration, we have identified a constitutive flavin dependent oxidase (EC 1.4.3.10) within Rhodococcus opacus. The activity of this oxidase can be increased by over two orders of magnitude in the presence of aliphatic diamines. In addition, the expression of a copper dependent diamine oxidase (EC 1.4.3.22) was observed at diamine concentrations>1mM or when cells were grown with butylamine, which acts to inhibit the flavin oxidase. A Michaelis-Menten kinetic treatment of the flavin oxidase delivered a Michaelis constant (KM)=190μM and maximum rate (kcat)=21.8s(-1) for the oxidative deamination of putrescine with a lower KM (=60μM) and comparable kcat (=18.2s(-1)) for the copper oxidase. MALDI-TOF and genomic analyses have indicated a metabolic clustering of functionally related genes. From a consideration of amine oxidase specificity and sequence homology, we propose a putrescine degradation pathway within Rhodococcus that utilises oxidases in tandem with subsequent dehydrogenase and transaminase enzymes. The implications of PUT homeostasis through the action of the two oxidases are discussed with respect to stressors, evolution and application in microbe-assisted phytoremediation or bio-augmentation.
Resumo:
Scaffolds are porous biocompatible materials with suitable microarchitectures that are designed to allow for cell adhesion, growth and proliferation. They are used in combination with cells in regenerative medicine to promote tissue regeneration by means of a controlled deposition of natural extracellular matrix by the hosted cells therein. This healing process is in many cases accompanied by scaffold degradation up to its total disappearance when the scaffold is made of a biodegradable material. This work presents a computational model that simulates the degradation of scaffolds. The model works with three-dimensional microstructures, which have been previously discretised into small cubic homogeneous elements, called voxels. The model simulates the evolution of the degradation of the scaffold using a Monte Carlo algorithm, which takes into account the curvature of the surface of the fibres. The simulation results obtained in this study are in good agreement with empirical degradation measurements performed by mass loss on scaffolds after exposure to an etching alkaline solution.
Resumo:
In this note, we present a method to characterize the degradation in performance that arises in linear systems due to constraints imposed on the magnitude of the control signal to avoid saturation effects. We do this in the context of cheap control for tracking step signals.
Resumo:
Anatase TiO2 nanocrystals were painted on H-titanate nanofibers by using an aqueous solution of titanyl sulfate. The anatase nanocrystals were bonded solidly onto the titanate fibers through formation of coherent interfaces at which the oxygen atoms were shared by the nanocrystals and the fiber. This approach allowed us to create large anatase surfaces on the nanofibers, which are active in photocatalytic reactions. This method was also applied successfully to coat anatase nanocrystals on surfaces of fly ash and layered clay. The painted nanofibers exhibited a much higher catalytic activity for the photocatalytic degradation of sulforhodamine B and the selective oxidation of benzylamine to the corresponding imine (with a product selectivity >99%) under UV irradiation than both the parent H-titanate nanofibers and a commercial TiO2 powder, P25. We found that gold nanoparticles supported on H-titanate nanofibers showed no catalytic activity for the reduction of nitrobenzene to azoxybenzene, whereas the gold nanoparticles supported on the painted nanofibers and P25 could efficiently reduce nitrobenzene to azoxybenzene as the sole product under visible light irradiation. These results were different from those from the reduction on the gold nanoparticles photocatalyst on ZrO2, in which the azoxybenzene was the intermediate and converted to azobenzene quickly. Evidently, the support materials significantly affect the product selectivity of the nitrobenzene reduction. Finally, the new photocatalysts could be easily dispersed into and separated from a liquid because of their fibril morphology, which is an important advantage for practical applications.
Resumo:
Novel nano zero-valent iron/palygorskite composite materials prepared by evaporative and centrifuge methods are tested for the degradation of bisphenol A in an aqueous medium. A systematic study is presented which showed that nano zero-valent iron material has little effect on bisphenol A degradation. When hydrogen peroxide was added to initiate the reaction, some percentage of bisphenol A removal (∼20%) was achieved; however, with the aid of air bubbles, the percentage removal can be significantly increased to ∼99%. Compared with pristine nano zero-valent iron and commercial iron powder, nano zero-valent iron/palygorskite composite materials have much higher reactivity towards bisphenol A and these materials are superior as they have little impact on the solution pH. However, for pristine nano zero-valent iron, it is difficult to maintain the reaction system at a favourable low pH which is a key factor in maintaining high bisphenol A removal. All materials were characterized by X-ray diffraction, scanning electron microscopy, elemental analysis, transmission electron microscopy and X-ray photoelectron spectroscopy. The optimum conditions were obtained based on a series of batch experiments. This study has extended the application of nano zero-valent iron/palygorskite composites as effective materials for the removal of phenolic compounds from the environment.
Resumo:
The expression of transgenes in plant genomes can be inhibited by either transcriptional gene silencing or posttranscriptional gene silencing (PTGS). Overexpression of the chalcone synthase-A (CHS-A) transgene triggers PTGS of CHS-A and thus results in loss of flower pigmentation in petunia. We previously demonstrated that epigenetic inactivation of CHS-A transgene transcription leads to a reversion of the PTGS phenotype. Although neomycin phosphotransferase II (nptII), a marker gene co-introduced into the genome with the CHS-A transgene, is not normally silenced in petunia, even when CHS-A is silenced, here we found that nptII was silenced in a petunia line in which CHS-A PTGS was induced, but not in the revertant plants that had no PTGS of CHS-A. Transcriptional activity, accumulation of short interfering RNAs, and restoration of mRNA level after infection with viruses that had suppressor proteins of gene silencing indicated that the mechanism for nptII silencing was posttranscriptional. Read-through transcripts of the CHS-A gene toward the nptII gene were detected. Deep-sequencing analysis revealed a striking difference between the predominant size class of small RNAs produced from the read-through transcripts (22 nt) and that from the CHS-A RNAs (21 nt). These results implicate the involvement of read-through transcription and distinct phases of RNA degradation in the coincident PTGS of linked transgenes and provide new insights into the destabilization of transgene expression.
Resumo:
Hindered amine light stabilisers (HALS) are the most effective antioxidants currently available for polymer systems in post-production, in-service applications, yet the mechanism of their action is still not fully understood. Structural characterisation of HALS in polymer matrices, particularly the identification of structural modifications brought about by oxidative conditions, is critical to aid mechanistic understanding of the prophylactic effects of these molecules. In this work, electrospray ionisation tandem mass spectrometry (ESI-MS/MS) was applied to the analysis of a suite of commercially available 2,2,6,6-tetramethylpiperidine-based HALS. Fragmentation mechanisms for the \[M + H](+) ions are proposed, which provide a rationale for the product ions observed in the MS/MS and MS(3) mass spectra of N-H, N-CH(3), N-C(O)CH(3) and N-OR containing HALS (where R is an alkyl substituent). A common product ion at m/z 123 was identified for the group of antioxidants containing N-H, N-CH3 or N-C(0)CH3 functionality, and this product ion was employed in precursor ion scans on a triple quadrupole mass spectrometer to identify the HALS species present in a crude extract from of a polyester-based coil coating. Using MS/MS, two degradation products were unambiguously identified. This technique provides a simple and selective approach to monitoring HALS structures within complex matrices. Copyright (C) 2010 John Wiley & Sons, Ltd.
Resumo:
In the avian model of myopia, retinal image degradation quickly leads to ocular enlargement. We now give evidence that regionally specific changes in ocular size are correlated with both biomechanical indices of scleral remodeling, e.g. hydration capacity and with biochemical changes in proteinase activities. The latter include a 72 kDa matrix metalloproteinase (putatively MMP-2), other gelatin-binding MMPs, an acid pH MMP and a serine protease. Specifically, we have found that increases in scleral hydrational capacity parallel increases in collagen degrading activities. Gelatin zymography reveals that eyes with 7 days of retinal image degradation have elevated levels (1.4-fold) of gelatinolytic activities at 72 and 67 kDa M(r) in equatorial and posterior pole regions of the sclera while, after 14 days of treatment, increases are no longer apparent. Lower M(r) zymographic activities at 50, 46 and 37 kDa M(r) are collectively increased in eyes treated for both 7 and 14 days (1.4- and 2.4-fold respectively) in the equator and posterior pole areas of enlarging eyes. Western blot analyses of scleral extracts with an antibody to human MMP-2 reveals immunoreactive bands at 65, 30 and 25 kDa. Zymograms incubated under slightly acidic conditions reveal that, in enlarging eyes, MMP activities at 25 and 28 kDa M(r) are increased in scleral equator and posterior pole (1.6- and 4.5-fold respectively). A TIMP-like protein is also identified in sclera and cornea by Western blot analysis. Finally, retinal-image degradation also increases (~2.6-fold) the activity of a 23.5 kDa serine proteinase in limbus, equator and posterior pole sclera that is inhibited by aprotinin and soybean trypsin inhibitor. Taken together, these results indicate that eye growth induced by retinal-image degradation involves increases in the activities of multiple scleral proteinases that could modify the biomechanical properties of scleral structural components and contribute to tissue remodeling and growth.
Resumo:
In the present study, we examined a panel of human breast cancer cell lines with regard to their expression of CD44 and ability to bind and degrade hyaluronan. The cell lines expressed varying amounts of different molecular weight forms of CD44 (85-200 kDa) and, in general, those that expressed the greatest amounts of CD44 were the most invasive as judged by in vitro assays. In addition, the ability to bind and degrade hyaluronan was restricted to the cell lines expressing high levels of CD44, and both these functions were blocked by an antibody to CD44 (Hermes-1). Moreover, the rate of [3H]hyaluronan degradation was highly correlated with the amount of CD44 (r = 0.951, P < 0.0001), as well as with the invasive potential of the cells. Scatchard analysis of the [3H]hyaluronan binding of these cells revealed the existence of significant differences in both their binding capacity and their dissociation constant. To determine the source of this deviation, the different molecular weight forms of CD44 were partially separated by gel filtration chromatography. In all cell lines, the 85 kDa form was able to bind hyaluronan, although with different affinities. In contrast, not all of the high molecular weight forms of CD44 had this ability. These results illustrate the diversity of CD44 molecules in invasive tumor cells, and suggest that one of their major functions is to degrade hyaluronan.
Resumo:
In this paper, a novel data-driven approach to monitoring of systems operating under variable operating conditions is described. The method is based on characterizing the degradation process via a set of operation-specific hidden Markov models (HMMs), whose hidden states represent the unobservable degradation states of the monitored system while its observable symbols represent the sensor readings. Using the HMM framework, modeling, identification and monitoring methods are detailed that allow one to identify a HMM of degradation for each operation from mixed-operation data and perform operation-specific monitoring of the system. Using a large data set provided by a major manufacturer, the new methods are applied to a semiconductor manufacturing process running multiple operations in a production environment.
Resumo:
Effective response by government and individuals to the risk of land degradation requires an understanding of regional climate variations and the impacts of climate and management on condition and productivity of land and vegetation resources. Analysis of past land degradation and climate variability provides some understanding of vulnerability to current and future climate changes and the information needs for more sustainable management. We describe experience in providing climate risk assessment information for managing for the risk of land degradation in north-eastern Australian arid and semi-arid regions used for extensive grazing. However, we note that information based on historical climate variability, which has been relied on in the past, will now also have to factor in the influence of human-induced climate change. Examples illustrate trends in climate for Australia over the past decade and the impacts on indicators of resource condition. The analysis highlights the benefits of insights into past trends and variability in rainfall and other climate variables based on extended historic databases. This understanding in turn supports more reliable regional climate projections and decision support information for governments and land managers to better manage the risk of land degradation now and in the future.
Resumo:
"The extended drought periods in each degradation episode have provided a test of the capacity of grazing systems (i.e. land, plants, animals, humans and social structure) to handle stress. Evidence that degradation was already occurring was identified prior to the extended drought sequences. The sequence of dry years, ranging from two to eight years, exposed and/or amplified the degradation processes. The unequivocal evidence was provided by: (a) the physical 'horror' of bare landscapes, erosion scalds and gullies and dust storms; (b) the biological devastation of woody weeds and animal suffering/deaths or forced sales, and; (c) the financial and emotional plight of graziers and their families due to reduced production in some cases leading to abandonment of properties or, sadly, deaths (e.g. McDonald 1991, Ker Conway 1989)."--Publisher website
Resumo:
Large scale exome sequencing studies have revealed regions of the genome, which contribute to the castrate resistant prostate cancer (CRPC) phenotype. [1],[2],[3] Such studies have identified mutations in genes, which may have diagnostic/prognostic potential, or which may be targeted therapeutically. Two of these genes include the androgen receptor (AR) and speckle-type POZ protein (SPOP) genes. However, the findings from these exome sequencing studies can only be translated therapeutically once the functional consequences of these mutations have been determined. Here, we highlight the recent study by An et al. [4] which investigated the functional effects of mutations in the SPOP gene that were identified in the aforementioned exome sequencing studies, particularly in the context of SPOP-mediated degradation of the AR.