162 resultados para Telephone, Automatic
Resumo:
Background The prevalence of type 2 diabetes is rising internationally. Patients with diabetes have a higher risk of cardiovascular events accounting for substantial premature morbidity and mortality, and health care expenditure. Given healthcare workforce limitations, there is a need to improve interventions that promote positive self-management behaviours that enable patients to manage their chronic conditions effectively, across different cultural contexts. Previous studies have evaluated the feasibility of including telephone and Short Message Service (SMS) follow up in chronic disease self-management programs, but only for single diseases or in one specific population. Therefore, the aim of this study is to evaluate the feasibility and short-term efficacy of incorporating telephone and text messaging to support the care of patients with diabetes and cardiac disease, in Australia and in Taiwan. Methods/design A randomised controlled trial design will be used to evaluate a self-management program for people with diabetes and cardiac disease that incorporates the use of simple remote-access communication technologies. A sample size of 180 participants from Australia and Taiwan will be recruited and randomised in a one-to-one ratio to receive either the intervention in addition to usual care (intervention) or usual care alone (control). The intervention will consist of in-hospital education as well as follow up utilising personal telephone calls and SMS reminders. Primary short term outcomes of interest include self-care behaviours and self-efficacy assessed at baseline and four weeks. Discussion If the results of this investigation substantiate the feasibility and efficacy of the telephone and SMS intervention for promoting self management among patients with diabetes and cardiac disease in Australia and Taiwan, it will support the external validity of the intervention. It is anticipated that empirical data from this investigation will provide valuable information to inform future international collaborations, while providing a platform for further enhancements of the program, which has potential to benefit patients internationally.
Resumo:
Following eco-driving instructions can reduce fuel consumption between 5 to 20% on urban roads with manual cars. The majority of Australian cars have an automatic transmission gear-box. It is therefore of interest to verify whether current eco-driving instructions are e cient for such vehicles. In this pilot study, participants (N=13) drove an instrumented vehicle (Toyota Camry 2007) with an automatic transmission. Fuel consumption of the participants was compared before and after they received simple eco-driving instructions. Participants drove the same vehicle on the same urban route under similar tra c conditions. We found that participants drove at similar speeds during their baseline and eco-friendly drives, and reduced the level of their accelerations and decelerations during eco-driving. Fuel consumption decreased for the complete drive by 7%, but not on the motorway and inclined sections of the study. Gas emissions were estimated with the VT-micro model, and emissions of the studied pollutants (CO2, CO, NOX and HC) were reduced, but no di erence was observed for CO2 on the motorway and inclined sections. The di erence for the complete lap is 3% for CO2. We have found evidence showing that simple eco-driving instructions are e cient in the case of automatic transmission in an urban environment, but towards the lowest values of the spectrum of fuel consumption reduction from the di erent eco-driving studies.
Resumo:
Raven and Song Scope are two automated sound anal-ysis tools based on machine learning technique for en-vironmental monitoring. Many research works have been conducted upon them, however, no or rare explo-ration mentions about the performance and comparison between them. This paper investigates the comparisons from six aspects: theory, software interface, ease of use, detection targets, detection accuracy, and potential application. Through deep exploration one critical gap is identified that there is a lack of approach to detect both syllables and call structures, since Raven only aims to detect syllables while Song Scope targets call structures. Therefore, a Timed Probabilistic Automata (TPA) system is proposed which separates syllables first and clusters them into complex structures after.
Resumo:
The assessment of choroidal thickness from optical coherence tomography (OCT) images of the human choroid is an important clinical and research task, since it provides valuable information regarding the eye’s normal anatomy and physiology, and changes associated with various eye diseases and the development of refractive error. Due to the time consuming and subjective nature of manual image analysis, there is a need for the development of reliable objective automated methods of image segmentation to derive choroidal thickness measures. However, the detection of the two boundaries which delineate the choroid is a complicated and challenging task, in particular the detection of the outer choroidal boundary, due to a number of issues including: (i) the vascular ocular tissue is non-uniform and rich in non-homogeneous features, and (ii) the boundary can have a low contrast. In this paper, an automatic segmentation technique based on graph-search theory is presented to segment the inner choroidal boundary (ICB) and the outer choroidal boundary (OCB) to obtain the choroid thickness profile from OCT images. Before the segmentation, the B-scan is pre-processed to enhance the two boundaries of interest and to minimize the artifacts produced by surrounding features. The algorithm to detect the ICB is based on a simple edge filter and a directional weighted map penalty, while the algorithm to detect the OCB is based on OCT image enhancement and a dual brightness probability gradient. The method was tested on a large data set of images from a pediatric (1083 B-scans) and an adult (90 B-scans) population, which were previously manually segmented by an experienced observer. The results demonstrate the proposed method provides robust detection of the boundaries of interest and is a useful tool to extract clinical data.
Resumo:
Access to dietetic care is important in chronic disease management and innovative technologies assists in this purpose. Photographic dietary records (PhDR) using mobile phones or cameras are valid and convenient for patients. Innovations in providing dietary interventions via telephone and computer can also inform dietetic practice. Three studies are presented. A mobile phone method was validated by comparing energy intake (EI) to a weighed food record and a measure of energy expenditure (EE) obtained using the doubly labelled water technique in 10 adults with T2 diabetes. The level of agreement between mean (±sd) energy intake mobile phone (8.2±1.7 MJ) and weighed record (8.5±1.6 MJ) was high (p=0.392), however EI/EE for both methods gave similar levels of under-reporting (0.69 and 0.72). All subjects preferred using the mobile phone vs. weighed record. Nineteen individuals with Parkinsons disease kept 3-day PhDRs on three occasions using point-and-shoot digital cameras over a 12 week period. The camera was rated as easy to use by 89%, keeping a PhDR was considered acceptable by 94% and none would rather use a “pen and paper” method. Eighty-three percent felt confident to use the camera again to record intake. An interactive, automated telephone system designed to coach people with T2 diabetes to adopt and maintain diabetes self-care behaviours, including nutrition, showed trends for improvements in total fat, saturated fat and vegetable intake of the intervention group compared to control participants over 6 months. Innovative technologies are acceptable to patients with chronic conditions and can be incorporated into dietetic care.
Resumo:
A large number of methods have been published that aim to evaluate various components of multi-view geometry systems. Most of these have focused on the feature extraction, description and matching stages (the visual front end), since geometry computation can be evaluated through simulation. Many data sets are constrained to small scale scenes or planar scenes that are not challenging to new algorithms, or require special equipment. This paper presents a method for automatically generating geometry ground truth and challenging test cases from high spatio-temporal resolution video. The objective of the system is to enable data collection at any physical scale, in any location and in various parts of the electromagnetic spectrum. The data generation process consists of collecting high resolution video, computing accurate sparse 3D reconstruction, video frame culling and down sampling, and test case selection. The evaluation process consists of applying a test 2-view geometry method to every test case and comparing the results to the ground truth. This system facilitates the evaluation of the whole geometry computation process or any part thereof against data compatible with a realistic application. A collection of example data sets and evaluations is included to demonstrate the range of applications of the proposed system.
Resumo:
This work aims at developing a planetary rover capable of acting as an assistant astrobiologist: making a preliminary analysis of the collected visual images that will help to make better use of the scientists time by pointing out the most interesting pieces of data. This paper focuses on the problem of detecting and recognising particular types of stromatolites. Inspired by the processes actual astrobiologists go through in the field when identifying stromatolites, the processes we investigate focus on recognising characteristics associated with biogenicity. The extraction of these characteristics is based on the analysis of geometrical structure enhanced by passing the images of stromatolites into an edge-detection filter and its Fourier Transform, revealing typical spatial frequency patterns. The proposed analysis is performed on both simulated images of stromatolite structures and images of real stromatolites taken in the field by astrobiologists.
Resumo:
Camera-laser calibration is necessary for many robotics and computer vision applications. However, existing calibration toolboxes still require laborious effort from the operator in order to achieve reliable and accurate results. This paper proposes algorithms that augment two existing trustful calibration methods with an automatic extraction of the calibration object from the sensor data. The result is a complete procedure that allows for automatic camera-laser calibration. The first stage of the procedure is automatic camera calibration which is useful in its own right for many applications. The chessboard extraction algorithm it provides is shown to outperform openly available techniques. The second stage completes the procedure by providing automatic camera-laser calibration. The procedure has been verified by extensive experimental tests with the proposed algorithms providing a major reduction in time required from an operator in comparison to manual methods.
Resumo:
A long query provides more useful hints for searching relevant documents, but it is likely to introduce noise which affects retrieval performance. In order to smooth such adverse effect, it is important to reduce noisy terms, introduce and boost additional relevant terms. This paper presents a comprehensive framework, called Aspect Hidden Markov Model (AHMM), which integrates query reduction and expansion, for retrieval with long queries. It optimizes the probability distribution of query terms by utilizing intra-query term dependencies as well as the relationships between query terms and words observed in relevance feedback documents. Empirical evaluation on three large-scale TREC collections demonstrates that our approach, which is automatic, achieves salient improvements over various strong baselines, and also reaches a comparable performance to a state of the art method based on user’s interactive query term reduction and expansion.
Resumo:
Background There are few data regarding the effectiveness of remote monitoring for older people with heart failure. We conducted a post-hoc sub-analysis of a previously published large Cochrane systematic review and meta-analysis of relevant randomized controlled trials to determine whether structured telephone support and telemonitoring were effective in this population. Methods A post hoc sub-analysis of a systematic review and meta-analysis that applied the Cochrane methodology was conducted. Meta-analyses of all-cause mortality, all-cause hospitalizations and heart failure-related hospitalizations were performed for studies where the mean or median age of participants was 70 or more years. Results The mean or median age of participants was 70 or more years in eight of the 16 (n=2,659/5,613; 47%) structured telephone support studies and four of the 11 (n=894/2,710; 33%) telemonitoring studies. Structured telephone support (RR 0.80; 95% CI=0.63-1.00) and telemonitoring (RR 0.56; 95% CI=0.41-0.76) interventions reduced mortality. Structured telephone support interventions reduced heart failure-related hospitalizations (RR 0.81; 95% CI=0.67-0.99). Conclusion Despite a systematic bias towards recruitment of individuals younger than the epidemiological average into the randomized controlled trials, older people with heart failure did benefit from structured telephone support and telemonitoring. These post-hoc sub-analysis results were similar to overall effects observed in the main meta-analysis. While further research is required to confirm these observational findings, the evidence at hand indicates that discrimination by age alone may be not be appropriate when inviting participation in a remote monitoring service for heart failure.
Resumo:
This is a discussion of the journal article: "Construcing summary statistics for approximate Bayesian computation: semi-automatic approximate Bayesian computation". The article and discussion have appeared in the Journal of the Royal Statistical Society: Series B (Statistical Methodology).
Resumo:
We present an approach to automatically de-identify health records. In our approach, personal health information is identified using a Conditional Random Fields machine learning classifier, a large set of linguistic and lexical features, and pattern matching techniques. Identified personal information is then removed from the reports. The de-identification of personal health information is fundamental for the sharing and secondary use of electronic health records, for example for data mining and disease monitoring. The effectiveness of our approach is first evaluated on the 2007 i2b2 Shared Task dataset, a widely adopted dataset for evaluating de-identification techniques. Subsequently, we investigate the robustness of the approach to limited training data; we study its effectiveness on different type and quality of data by evaluating the approach on scanned pathology reports from an Australian institution. This data contains optical character recognition errors, as well as linguistic conventions that differ from those contained in the i2b2 dataset, for example different date formats. The findings suggest that our approach compares to the best approach from the 2007 i2b2 Shared Task; in addition, the approach is found to be robust to variations of training size, data type and quality in presence of sufficient training data.
Resumo:
Objective To develop and evaluate machine learning techniques that identify limb fractures and other abnormalities (e.g. dislocations) from radiology reports. Materials and Methods 99 free-text reports of limb radiology examinations were acquired from an Australian public hospital. Two clinicians were employed to identify fractures and abnormalities from the reports; a third senior clinician resolved disagreements. These assessors found that, of the 99 reports, 48 referred to fractures or abnormalities of limb structures. Automated methods were then used to extract features from these reports that could be useful for their automatic classification. The Naive Bayes classification algorithm and two implementations of the support vector machine algorithm were formally evaluated using cross-fold validation over the 99 reports. Result Results show that the Naive Bayes classifier accurately identifies fractures and other abnormalities from the radiology reports. These results were achieved when extracting stemmed token bigram and negation features, as well as using these features in combination with SNOMED CT concepts related to abnormalities and disorders. The latter feature has not been used in previous works that attempted classifying free-text radiology reports. Discussion Automated classification methods have proven effective at identifying fractures and other abnormalities from radiology reports (F-Measure up to 92.31%). Key to the success of these techniques are features such as stemmed token bigrams, negations, and SNOMED CT concepts associated with morphologic abnormalities and disorders. Conclusion This investigation shows early promising results and future work will further validate and strengthen the proposed approaches.
Resumo:
In the last years, the trade-o between exibility and sup- port has become a leading issue in work ow technology. In this paper we show how an imperative modeling approach used to de ne stable and well-understood processes can be complemented by a modeling ap- proach that enables automatic process adaptation and exploits planning techniques to deal with environmental changes and exceptions that may occur during process execution. To this end, we designed and imple- mented a Custom Service that allows the Yawl execution environment to delegate the execution of subprocesses and activities to the SmartPM execution environment, which is able to automatically adapt a process to deal with emerging changes and exceptions. We demonstrate the fea- sibility and validity of the approach by showing the design and execution of an emergency management process de ned for train derailments.