638 resultados para Table manipulation (Computer science)
Resumo:
This paper introduces fast algorithms for performing group operations on twisted Edwards curves, pushing the recent speed limits of Elliptic Curve Cryptography (ECC) forward in a wide range of applications. Notably, the new addition algorithm uses for suitably selected curve constants. In comparison, the fastest point addition algorithms for (twisted) Edwards curves stated in the literature use . It is also shown that the new addition algorithm can be implemented with four processors dropping the effective cost to . This implies an effective speed increase by the full factor of 4 over the sequential case. Our results allow faster implementation of elliptic curve scalar multiplication. In addition, the new point addition algorithm can be used to provide a natural protection from side channel attacks based on simple power analysis (SPA).
Resumo:
This paper provides new results about efficient arithmetic on Jacobi quartic form elliptic curves, y 2 = d x 4 + 2 a x 2 + 1. With recent bandwidth-efficient proposals, the arithmetic on Jacobi quartic curves became solidly faster than that of Weierstrass curves. These proposals use up to 7 coordinates to represent a single point. However, fast scalar multiplication algorithms based on windowing techniques, precompute and store several points which require more space than what it takes with 3 coordinates. Also note that some of these proposals require d = 1 for full speed. Unfortunately, elliptic curves having 2-times-a-prime number of points, cannot be written in Jacobi quartic form if d = 1. Even worse the contemporary formulae may fail to output correct coordinates for some inputs. This paper provides improved speeds using fewer coordinates without causing the above mentioned problems. For instance, our proposed point doubling algorithm takes only 2 multiplications, 5 squarings, and no multiplication with curve constants when d is arbitrary and a = ±1/2.
Resumo:
This paper presents efficient formulas for computing cryptographic pairings on the curve y 2 = c x 3 + 1 over fields of large characteristic. We provide examples of pairing-friendly elliptic curves of this form which are of interest for efficient pairing implementations.
Resumo:
This paper reports on a replication of earlier studies into a possible hierarchy of programming skills. In this study, the students from whom data was collected were at a university that had not provided data for earlier studies. Also, the students were taught the programming language Python, which had not been used in earlier studies. Thus this study serves as a test of whether the findings in the earlier studies were specific to certain institutions, student cohorts, and programming languages. Also, we used a non–parametric approach to the analysis, rather than the linear approach of earlier studies. Our results are consistent with the earlier studies. We found that students who cannot trace code usually cannot explain code, and also that students who tend to perform reasonably well at code writing tasks have also usually acquired the ability to both trace code and explain code.
Resumo:
This paper describes the approach taken to the XML Mining track at INEX 2008 by a group at the Queensland University of Technology. We introduce the K-tree clustering algorithm in an Information Retrieval context by adapting it for document clustering. Many large scale problems exist in document clustering. K-tree scales well with large inputs due to its low complexity. It offers promising results both in terms of efficiency and quality. Document classification was completed using Support Vector Machines.
Resumo:
The Open and Trusted Health Information Systems (OTHIS) Research Group has formed in response to the health sector’s privacy and security requirements for contemporary Health Information Systems (HIS). Due to recent research developments in trusted computing concepts, it is now both timely and desirable to move electronic HIS towards privacy-aware and security-aware applications. We introduce the OTHIS architecture in this paper. This scheme proposes a feasible and sustainable solution to meeting real-world application security demands using commercial off-the-shelf systems and commodity hardware and software products.
Resumo:
Information and Communications Technologies globally are moving towards Service Oriented Architectures and Web Services. The healthcare environment is rapidly moving to the use of Service Oriented Architecture/Web Services systems interconnected via this global open Internet. Such moves present major challenges where these structures are not based on highly trusted operating systems. This paper argues the need of a radical re-think of access control in the contemporary healthcare environment in light of modern information system structures, legislative and regulatory requirements, and security operation demands in Health Information Systems. This paper proposes the Open and Trusted Health Information Systems (OTHIS), a viable solution including override capability to the provision of appropriate levels of secure access control for the protection of sensitive health data.
Resumo:
Current regulatory requirements on data privacy make it increasingly important for enterprises to be able to verify and audit their compliance with their privacy policies. Traditionally, a privacy policy is written in a natural language. Such policies inherit the potential ambiguity, inconsistency and mis-interpretation of natural text. Hence, formal languages are emerging to allow a precise specification of enforceable privacy policies that can be verified. The EP3P language is one such formal language. An EP3P privacy policy of an enterprise consists of many rules. Given the semantics of the language, there may exist some rules in the ruleset which can never be used, these rules are referred to as redundant rules. Redundancies adversely affect privacy policies in several ways. Firstly, redundant rules reduce the efficiency of operations on privacy policies. Secondly, they may misdirect the policy auditor when determining the outcome of a policy. Therefore, in order to address these deficiencies it is important to identify and resolve redundancies. This thesis introduces the concept of minimal privacy policy - a policy that is free of redundancy. The essential component for maintaining the minimality of privacy policies is to determine the effects of the rules on each other. Hence, redundancy detection and resolution frameworks are proposed. Pair-wise redundancy detection is the central concept in these frameworks and it suggests a pair-wise comparison of the rules in order to detect redundancies. In addition, the thesis introduces a policy management tool that assists policy auditors in performing several operations on an EP3P privacy policy while maintaining its minimality. Formal results comparing alternative notions of redundancy, and how this would affect the tool, are also presented.
Resumo:
This paper describes a novel framework for facial expression recognition from still images by selecting, optimizing and fusing ‘salient’ Gabor feature layers to recognize six universal facial expressions using the K nearest neighbor classifier. The recognition comparisons with all layer approach using JAFFE and Cohn-Kanade (CK) databases confirm that using ‘salient’ Gabor feature layers with optimized sizes can achieve better recognition performance and dramatically reduce computational time. Moreover, comparisons with the state of the art performances demonstrate the effectiveness of our approach.
Resumo:
This paper addresses the following problem: given two or more business process models, create a process model that is the union of the process models given as input. In other words, the behavior of the produced process model should encompass that of the input models. The paper describes an algorithm that produces a single configurable process model from an arbitrary collection of process models. The algorithm works by extracting the common parts of the input process models, creating a single copy of them, and appending the differences as branches of configurable connectors. This way, the merged process model is kept as small as possible, while still capturing all the behavior of the input models. Moreover, analysts are able to trace back from which original model(s) does a given element in the merged model come from. The algorithm has been prototyped and tested against process models taken from several application domains.
Resumo:
We consider one-round key exchange protocols secure in the standard model. The security analysis uses the powerful security model of Canetti and Krawczyk and a natural extension of it to the ID-based setting. It is shown how KEMs can be used in a generic way to obtain two different protocol designs with progressively stronger security guarantees. A detailed analysis of the performance of the protocols is included; surprisingly, when instantiated with specific KEM constructions, the resulting protocols are competitive with the best previous schemes that have proofs only in the random oracle model.
Resumo:
Collaborative tagging can help users organize, share and retrieve information in an easy and quick way. For the collaborative tagging information implies user’s important personal preference information, it can be used to recommend personalized items to users. This paper proposes a novel tag-based collaborative filtering approach for recommending personalized items to users of online communities that are equipped with tagging facilities. Based on the distinctive three dimensional relationships among users, tags and items, a new similarity measure method is proposed to generate the neighborhood of users with similar tagging behavior instead of similar implicit ratings. The promising experiment result shows that by using the tagging information the proposed approach outperforms the standard user and item based collaborative filtering approaches.
Resumo:
Cultural objects are increasingly generated and stored in digital form, yet effective methods for their indexing and retrieval still remain an important area of research. The main problem arises from the disconnection between the content-based indexing approach used by computer scientists and the description-based approach used by information scientists. There is also a lack of representational schemes that allow the alignment of the semantics and context with keywords and low-level features that can be automatically extracted from the content of these cultural objects. This paper presents an integrated approach to address these problems, taking advantage of both computer science and information science approaches. We firstly discuss the requirements from a number of perspectives: users, content providers, content managers and technical systems. We then present an overview of our system architecture and describe various techniques which underlie the major components of the system. These include: automatic object category detection; user-driven tagging; metadata transform and augmentation, and an expression language for digital cultural objects. In addition, we discuss our experience on testing and evaluating some existing collections, analyse the difficulties encountered and propose ways to address these problems.
Resumo:
This talk proceeds from the premise that IR should engage in a more substantial dialogue with cognitive science. After all, how users decide relevance, or how they chose terms to modify a query are processes rooted in human cognition. Recently, there has been a growing literature applying quantum theory (QT) to model cognitive phenomena. This talk will survey recent research, in particular, modelling interference effects in human decision making. One aspect of QT will be illustrated - how quantum entanglement can be used to model word associations in human memory. The implications of this will be briefly discussed in terms of a new approach for modelling concept combinations. Tentative links to human adductive reasoning will also be drawn. The basic theme behind this talk is QT can potentially provide a new genre of information processing models (including search) more aligned with human cognition.
Resumo:
One of the classic forms of intermediate representation used for communication between compiler front-ends and back-ends are those based on abstract stack machines. It is possible to compile the stack machine instructions into machine code by means of an interpretive code generator, or to simulate the stack machine at runtime using an interpreter. This paper describes an approach intermediate between these two extremes. The front-end for a commercial Modula 2 compiler was ported to the "industry standard PC", and a partially compiling back-end written. The object code runs with the assistance of an interpreter, but may be linked with libraries which are fully compiled. The intent was to provide a programming environment on the PC which is identical to that of the same compilers on 32-bit UNIX machines. This objective has been met, and the compiler is available to educational institutions as free-ware. The design basis of the new compiler is described, and the performance critically evaluated.