190 resultados para Supervised classification


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Greater than 750 individual particles have now been selected from collection flags housed in the JSC Cosmic Dust Curatorial Facility and most have been documented in the Cosmic Dust Catalogs [1]. As increasing numbers of particles are placed in Cosmic Dust Collections, and a greater diversity of particles are introduced to the stratosphere through natural and man-made processes (e.g. decaying orbits of space debris [2]), there is an even greater need for a classification scheme to encompass all stratospheric particles rather than only extraterrestrial particles. The fundamental requirements for a suitable classification scheme have been outlined in earlier communications [3,4]. A quantitative survey of particles on collection flag W7017 indicates that there is some bias in the number of samples selected within a given category for the Cosmic Dust Catalog [5]. However, the sample diversity within this selection is still appropriate for the development of a reliable classification scheme. In this paper, we extend the earlier works on stratospheric particle classification to include particles collected during the period May 1981 to November 1983.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we propose a semi-supervised approach of anomaly detection in Online Social Networks. The social network is modeled as a graph and its features are extracted to detect anomaly. A clustering algorithm is then used to group users based on these features and fuzzy logic is applied to assign degree of anomalous behavior to the users of these clusters. Empirical analysis shows effectiveness of this method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Next Generation Sequencing (NGS) has revolutionised molec- ular biology, allowing routine clinical sequencing. NGS data consists of short sequence reads, given context through downstream assembly and annotation, a process requiring reads consistent with the assumed species or species group. The common bacterium Staphylococcus aureus may cause severe and life-threatening infections in humans, with some strains exhibiting antibiotic resistance. Here we apply an SVM classifier to the important problem of distinguishing S. aureus sequencing projects from other pathogens, including closely related Staphylococci. Using a sequence k-mer representation, we achieve precision and recall above 95%, implicating features with important functional associations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cardiomyopathies represent a group of diseases of the myocardium of the heart and include diseases both primarily of the cardiac muscle and systemic diseases leading to adverse effects on the heart muscle size, shape, and function. Traditionally cardiomyopathies were defined according to phenotypical appearance. Now, as our understanding of the pathophysiology of the different entities classified under each of the different phenotypes improves and our knowledge of the molecular and genetic basis for these entities progresses, the traditional classifications seem oversimplistic and do not reflect current understanding of this myriad of diseases and disease processes. Although our knowledge of the exact basis of many of the disease processes of cardiomyopathies is still in its infancy, it is important to have a classification system that has the ability to incorporate the coming tide of molecular and genetic information. This paper discusses how the traditional classification of cardiomyopathies based on morphology has evolved due to rapid advances in our understanding of the genetic and molecular basis for many of these clinical entities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Highly sensitive infrared cameras can produce high-resolution diagnostic images of the temperature and vascular changes of breasts. Wavelet transform based features are suitable in extracting the texture difference information of these images due to their scale-space decomposition. The objective of this study is to investigate the potential of extracted features in differentiating between breast lesions by comparing the two corresponding pectoral regions of two breast thermograms. The pectoral regions of breastsare important because near 50% of all breast cancer is located in this region. In this study, the pectoral region of the left breast is selected. Then the corresponding pectoral region of the right breast is identified. Texture features based on the first and the second sets of statistics are extracted from wavelet decomposed images of the pectoral regions of two breast thermograms. Principal component analysis is used to reduce dimension and an Adaboost classifier to evaluate classification performance. A number of different wavelet features are compared and it is shown that complex non-separable 2D discrete wavelet transform features perform better than their real separable counterparts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper elaborates the approach used by the Applied Data Mining Research Group (ADMRG) for the Social Event Detection (SED) Tasks of the 2013 MediaEval Benchmark. We extended the constrained clustering algorithm to apply to the first semi-supervised clustering task, and we compared several classifiers with Latent Dirichlet Allocation as feature selector in the second event classification task. The proposed approach focuses on scalability and efficient memory allocation when applied to a high dimensional data with large clusters. Results of the first task show the effectiveness of the proposed method. Results from task 2 indicate that attention on the imbalance categories distributions is needed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is often reported that females lose less body weight than males do in response to exercise. These differences are suggested to be a result of females exhibiting a stronger defense of body fat and a greater compensatory appetite response to exercise than males do. Purpose This study aimed to compare the effect of a 12-wk supervised exercise program on body weight, body composition, appetite, and energy intake in males and females. Methods A total of 107 overweight and obese adults (males = 35, premenopausal females = 72, BMI = 31.4 ± 4.2 kg·m−2, age = 40.9 ± 9.2 yr) completed a supervised 12-wk exercise program expending approximately 10.5 MJ·wk−1 at 70% HRmax. Body composition, energy intake, appetite ratings, RMR, and cardiovascular fitness were measured at weeks 0 and 12. Results The 12-wk exercise program led to significant reductions in body mass (males [M] = −3.03 ± 3.4 kg and females [F] = −2.28 ± 3.1 kg), fat mass (M = −3.14 ± 3.7 kg and F = −3.01 ± 3.0 kg), and percent body fat (M = −2.45% ± 3.3% and F = −2.45% ± 2.2%; all P < 0.0001), but there were no sex-based differences (P > 0.05). There were no significant changes in daily energy intake in males or females after the exercise intervention compared with baseline (M = 199.2 ± 2418.1 kJ and F = −131.6 ± 1912.0 kJ, P > 0.05). Fasting hunger levels significantly increased after the intervention compared with baseline values (M = 11.0 ± 21.1 min and F = 14.0 ± 22.9 mm, P < 0.0001), but there were no differences between males and females (P > 0.05). The exercise also improved satiety responses to an individualized fixed-energy breakfast (P < 0.0001). This was comparable in males and females. Conclusions Males and premenopausal females did not differ in their response to a 12-wk exercise intervention and achieved similar reductions in body fat. When exercise interventions are supervised and energy expenditure is controlled, there are no sex-based differences in the measured compensatory response to exercise.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Textual document set has become an important and rapidly growing information source in the web. Text classification is one of the crucial technologies for information organisation and management. Text classification has become more and more important and attracted wide attention of researchers from different research fields. In this paper, many feature selection methods, the implement algorithms and applications of text classification are introduced firstly. However, because there are much noise in the knowledge extracted by current data-mining techniques for text classification, it leads to much uncertainty in the process of text classification which is produced from both the knowledge extraction and knowledge usage, therefore, more innovative techniques and methods are needed to improve the performance of text classification. It has been a critical step with great challenge to further improve the process of knowledge extraction and effectively utilization of the extracted knowledge. Rough Set decision making approach is proposed to use Rough Set decision techniques to more precisely classify the textual documents which are difficult to separate by the classic text classification methods. The purpose of this paper is to give an overview of existing text classification technologies, to demonstrate the Rough Set concepts and the decision making approach based on Rough Set theory for building more reliable and effective text classification framework with higher precision, to set up an innovative evaluation metric named CEI which is very effective for the performance assessment of the similar research, and to propose a promising research direction for addressing the challenging problems in text classification, text mining and other relative fields.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The detection and correction of defects remains among the most time consuming and expensive aspects of software development. Extensive automated testing and code inspections may mitigate their effect, but some code fragments are necessarily more likely to be faulty than others, and automated identification of fault prone modules helps to focus testing and inspections, thus limiting wasted effort and potentially improving detection rates. However, software metrics data is often extremely noisy, with enormous imbalances in the size of the positive and negative classes. In this work, we present a new approach to predictive modelling of fault proneness in software modules, introducing a new feature representation to overcome some of these issues. This rank sum representation offers improved or at worst comparable performance to earlier approaches for standard data sets, and readily allows the user to choose an appropriate trade-off between precision and recall to optimise inspection effort to suit different testing environments. The method is evaluated using the NASA Metrics Data Program (MDP) data sets, and performance is compared with existing studies based on the Support Vector Machine (SVM) and Naïve Bayes (NB) Classifiers, and with our own comprehensive evaluation of these methods.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Object classification is plagued by the issue of session variation. Session variation describes any variation that makes one instance of an object look different to another, for instance due to pose or illumination variation. Recent work in the challenging task of face verification has shown that session variability modelling provides a mechanism to overcome some of these limitations. However, for computer vision purposes, it has only been applied in the limited setting of face verification. In this paper we propose a local region based intersession variability (ISV) modelling approach, and apply it to challenging real-world data. We propose a region based session variability modelling approach so that local session variations can be modelled, termed Local ISV. We then demonstrate the efficacy of this technique on a challenging real-world fish image database which includes images taken underwater, providing significant real-world session variations. This Local ISV approach provides a relative performance improvement of, on average, 23% on the challenging MOBIO, Multi-PIE and SCface face databases. It also provides a relative performance improvement of 35% on our challenging fish image dataset.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background Sleep disturbances, including insomnia and sleep-disordered breathing, are a common complaint in people with heart failure and impair well-being. Exercise training (ET) improves quality of life in stable heart failure patients. ET also improves sleep quality in healthy older patients, but there are no previous intervention studies in heart failure patients. Aim The aim of this study was to examine the impact of ET on sleep quality in patients recently discharged from hospital with heart failure. Methods This was a sub-study of a multisite randomised controlled trial. Participants with a heart failure hospitalisation were randomised within six weeks of discharge to a 12-week disease management programme including exercise advice (n=52) or to the same programme with twice weekly structured ET (n=54). ET consisted of two one-hour supervised aerobic and resistance training sessions, prescribed and advanced by an exercise specialist. The primary outcome was change in Pittsburgh Sleep Quality Index (PSQI) between randomisation and week 12. Results At randomisation, 45% of participants reported poor sleep (PSQI≥5). PSQI global score improved significantly more in the ET group than the control group (–1.5±3.7 vs 0.4±3.8, p=0.03). Improved sleep quality correlated with improved exercise capacity and reduced depressive symptoms, but not with changes in body mass index or resting heart rate. Conclusion Twelve weeks of twice-weekly supervised ET improved sleep quality in patients recently discharged from hospital with heart failure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A cell classification algorithm that uses first, second and third order statistics of pixel intensity distributions over pre-defined regions is implemented and evaluated. A cell image is segmented into 6 regions extending from a boundary layer to an inner circle. First, second and third order statistical features are extracted from histograms of pixel intensities in these regions. Third order statistical features used are one-dimensional bispectral invariants. 108 features were considered as candidates for Adaboost based fusion. The best 10 stage fused classifier was selected for each class and a decision tree constructed for the 6-class problem. The classifier is robust, accurate and fast by design.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Real-time image analysis and classification onboard robotic marine vehicles, such as AUVs, is a key step in the realisation of adaptive mission planning for large-scale habitat mapping in previously unexplored environments. This paper describes a novel technique to train, process, and classify images collected onboard an AUV used in relatively shallow waters with poor visibility and non-uniform lighting. The approach utilises Förstner feature detectors and Laws texture energy masks for image characterisation, and a bag of words approach for feature recognition. To improve classification performance we propose a usefulness gain to learn the importance of each histogram component for each class. Experimental results illustrate the performance of the system in characterisation of a variety of marine habitats and its ability to operate onboard an AUV's main processor suitable for real-time mission planning.