330 resultados para Structural composites
Resumo:
Pascoite mineral having yellow-orange colour of Colorado, USA origin has been characterized by EPR, optical and NIR spectroscopy. The colour dark red-orange to yellow-orange colour of the pascoite indicates that the mineral contain mixed valency of vanadium. The optical spectrum exhibits a number of electronic bands due to presence of VO(II) ions in the mineral. From EPR studies, the parameters of g, A are evaluated and the data confirm that the ion is in distorted octahedron. Optical absorption studies reveal that two sets of VO(II) is in distorted octahedron. The bands in NIR spectra are due to the overtones and combinations of water molecules.
Resumo:
A series of layered double hydroxides (LDHs) based composites were synthesized by using induced hydrolysis silylation method (IHS), surfactant precursor method, in-situ coprecipitation method, and direct silylation method. Their structures, morphologies, bonding modes and thermal stabilities can be readily adjusted by changing the parameters during preparation and drying processing of the LDHs. The characterization results show that the direct silylation reaction cannot occur between the dried LDHs and 3-aminopropyltriethoxysilane (APS) in an ethanol medium. However, the condensation reaction can proceed with heating process between adsorbed APS and LDHs plates. While using wet state substrates with and without surfactant and ethanol as the solvent, the silylation process can be induced by hydrolysis of APS on the surface of LDHs plates. Surfactants improve the hydrophobicity of the LDHs during the process of nucleation and crystallization, resulting in fluffy shaped crystals; meanwhile, they occupy the surface –OH positions and leave less “free –OH” available for the silylation reaction, favoring formation of silylated products with a higher population in the hydrolyzed bidentate (T2) and tridentate (T3) bonding forms. These bonding characteristics lead to spherical aggregates and tightly bonded particles. All silylated products show higher thermal stability than those of pristine LDHs.
Resumo:
The molecular structure of the mineral archerite ((K,NH4)H2PO4) has been determined and compared with that of biphosphammite ((NH4,K)H2PO4). Raman spectroscopy and infrared spectroscopy has been used to characterise these ‘cave’ minerals. Both minerals originated from the Murra-el-elevyn Cave, Eucla, Western Australia. The mineral is formed by the reaction of the chemicals in bat guano with calcite substrates. Raman and infrared bands are assigned to H2PO4-, OH and NH stretching vibrations. The Raman band at 981 cm-1 is assigned to the HOP stretching vibration. Bands in the 1200 to 1800 cm-1 region are associated with NH4+ bending modes. The molecular structure of the two minerals appear to be very similar, and it is therefore concluded that the two minerals are identical.
Resumo:
We investigate the use of certain data-dependent estimates of the complexity of a function class, called Rademacher and Gaussian complexities. In a decision theoretic setting, we prove general risk bounds in terms of these complexities. We consider function classes that can be expressed as combinations of functions from basis classes and show how the Rademacher and Gaussian complexities of such a function class can be bounded in terms of the complexity of the basis classes. We give examples of the application of these techniques in finding data-dependent risk bounds for decision trees, neural networks and support vector machines.
Resumo:
Damage detection in structures has become increasingly important in recent years. While a number of damage detection and localization methods have been proposed, few attempts have been made to explore the structure damage with frequency response functions (FRFs). This paper illustrates the damage identification and condition assessment of a beam structure using a new frequency response functions (FRFs) based damage index and Artificial Neural Networks (ANNs). In practice, usage of all available FRF data as an input to artificial neural networks makes the training and convergence impossible. Therefore one of the data reduction techniques Principal Component Analysis (PCA) is introduced in the algorithm. In the proposed procedure, a large set of FRFs are divided into sub-sets in order to find the damage indices for different frequency points of different damage scenarios. The basic idea of this method is to establish features of damaged structure using FRFs from different measurement points of different sub-sets of intact structure. Then using these features, damage indices of different damage cases of the structure are identified after reconstructing of available FRF data using PCA. The obtained damage indices corresponding to different damage locations and severities are introduced as input variable to developed artificial neural networks. Finally, the effectiveness of the proposed method is illustrated and validated by using the finite element modal of a beam structure. The illustrated results show that the PCA based damage index is suitable and effective for structural damage detection and condition assessment of building structures.