193 resultados para Segmentation cardiaque
Resumo:
In this paper, we describe the development of an independent and on-board visual servoing system which allows a computationally impoverished aerial vehicle to autonomously identify and track a moving surface target. Our image segmentation and target identification algorithms were developed with the specific task of monitoring whales at sea but could be adapted for other targets. Observing whales is important for many marine biology tasks and is currently performed manually from the shore or from boats. We also present hardware experiments which demonstrate the capabilities of our algorithms for object identification and tracking that enable a flying vehicle to track a moving target.
Resumo:
This paper examines the use of social enterprise – that is, not for personal profit businesses that have a strong social purpose- to support training and employment pathways for migrants and refugees facing multiple forms of exclusion. Drawing on an evaluation of a program that supports seven social enterprises in the Australian state of Victoria, the study finds that social enterprise affords unique local opportunities for economic and social participation for the program’s participants. Nevertheless, there are limits to the impacts of programs that mediate transitions within an increasingly flexible labour market without redressing the broader social determinants of labour market segmentation.
Resumo:
In information retrieval (IR) research, more and more focus has been placed on optimizing a query language model by detecting and estimating the dependencies between the query and the observed terms occurring in the selected relevance feedback documents. In this paper, we propose a novel Aspect Language Modeling framework featuring term association acquisition, document segmentation, query decomposition, and an Aspect Model (AM) for parameter optimization. Through the proposed framework, we advance the theory and practice of applying high-order and context-sensitive term relationships to IR. We first decompose a query into subsets of query terms. Then we segment the relevance feedback documents into chunks using multiple sliding windows. Finally we discover the higher order term associations, that is, the terms in these chunks with high degree of association to the subsets of the query. In this process, we adopt an approach by combining the AM with the Association Rule (AR) mining. In our approach, the AM not only considers the subsets of a query as “hidden” states and estimates their prior distributions, but also evaluates the dependencies between the subsets of a query and the observed terms extracted from the chunks of feedback documents. The AR provides a reasonable initial estimation of the high-order term associations by discovering the associated rules from the document chunks. Experimental results on various TREC collections verify the effectiveness of our approach, which significantly outperforms a baseline language model and two state-of-the-art query language models namely the Relevance Model and the Information Flow model
Resumo:
Accurate and detailed road models play an important role in a number of geospatial applications, such as infrastructure planning, traffic monitoring, and driver assistance systems. In this thesis, an integrated approach for the automatic extraction of precise road features from high resolution aerial images and LiDAR point clouds is presented. A framework of road information modeling has been proposed, for rural and urban scenarios respectively, and an integrated system has been developed to deal with road feature extraction using image and LiDAR analysis. For road extraction in rural regions, a hierarchical image analysis is first performed to maximize the exploitation of road characteristics in different resolutions. The rough locations and directions of roads are provided by the road centerlines detected in low resolution images, both of which can be further employed to facilitate the road information generation in high resolution images. The histogram thresholding method is then chosen to classify road details in high resolution images, where color space transformation is used for data preparation. After the road surface detection, anisotropic Gaussian and Gabor filters are employed to enhance road pavement markings while constraining other ground objects, such as vegetation and houses. Afterwards, pavement markings are obtained from the filtered image using the Otsu's clustering method. The final road model is generated by superimposing the lane markings on the road surfaces, where the digital terrain model (DTM) produced by LiDAR data can also be combined to obtain the 3D road model. As the extraction of roads in urban areas is greatly affected by buildings, shadows, vehicles, and parking lots, we combine high resolution aerial images and dense LiDAR data to fully exploit the precise spectral and horizontal spatial resolution of aerial images and the accurate vertical information provided by airborne LiDAR. Objectoriented image analysis methods are employed to process the feature classiffcation and road detection in aerial images. In this process, we first utilize an adaptive mean shift (MS) segmentation algorithm to segment the original images into meaningful object-oriented clusters. Then the support vector machine (SVM) algorithm is further applied on the MS segmented image to extract road objects. Road surface detected in LiDAR intensity images is taken as a mask to remove the effects of shadows and trees. In addition, normalized DSM (nDSM) obtained from LiDAR is employed to filter out other above-ground objects, such as buildings and vehicles. The proposed road extraction approaches are tested using rural and urban datasets respectively. The rural road extraction method is performed using pan-sharpened aerial images of the Bruce Highway, Gympie, Queensland. The road extraction algorithm for urban regions is tested using the datasets of Bundaberg, which combine aerial imagery and LiDAR data. Quantitative evaluation of the extracted road information for both datasets has been carried out. The experiments and the evaluation results using Gympie datasets show that more than 96% of the road surfaces and over 90% of the lane markings are accurately reconstructed, and the false alarm rates for road surfaces and lane markings are below 3% and 2% respectively. For the urban test sites of Bundaberg, more than 93% of the road surface is correctly reconstructed, and the mis-detection rate is below 10%.
Resumo:
The design of pre-contoured fracture fixation implants (plates and nails) that correctly fit the anatomy of a patient utilises 3D models of long bones with accurate geometric representation. 3D data is usually available from computed tomography (CT) scans of human cadavers that generally represent the above 60 year old age group. Thus, despite the fact that half of the seriously injured population comes from the 30 year age group and below, virtually no data exists from these younger age groups to inform the design of implants that optimally fit patients from these groups. Hence, relevant bone data from these age groups is required. The current gold standard for acquiring such data–CT–involves ionising radiation and cannot be used to scan healthy human volunteers. Magnetic resonance imaging (MRI) has been shown to be a potential alternative in the previous studies conducted using small bones (tarsal bones) and parts of the long bones. However, in order to use MRI effectively for 3D reconstruction of human long bones, further validations using long bones and appropriate reference standards are required. Accurate reconstruction of 3D models from CT or MRI data sets requires an accurate image segmentation method. Currently available sophisticated segmentation methods involve complex programming and mathematics that researchers are not trained to perform. Therefore, an accurate but relatively simple segmentation method is required for segmentation of CT and MRI data. Furthermore, some of the limitations of 1.5T MRI such as very long scanning times and poor contrast in articular regions can potentially be reduced by using higher field 3T MRI imaging. However, a quantification of the signal to noise ratio (SNR) gain at the bone - soft tissue interface should be performed; this is not reported in the literature. As MRI scanning of long bones has very long scanning times, the acquired images are more prone to motion artefacts due to random movements of the subject‟s limbs. One of the artefacts observed is the step artefact that is believed to occur from the random movements of the volunteer during a scan. This needs to be corrected before the models can be used for implant design. As the first aim, this study investigated two segmentation methods: intensity thresholding and Canny edge detection as accurate but simple segmentation methods for segmentation of MRI and CT data. The second aim was to investigate the usability of MRI as a radiation free imaging alternative to CT for reconstruction of 3D models of long bones. The third aim was to use 3T MRI to improve the poor contrast in articular regions and long scanning times of current MRI. The fourth and final aim was to minimise the step artefact using 3D modelling techniques. The segmentation methods were investigated using CT scans of five ovine femora. The single level thresholding was performed using a visually selected threshold level to segment the complete femur. For multilevel thresholding, multiple threshold levels calculated from the threshold selection method were used for the proximal, diaphyseal and distal regions of the femur. Canny edge detection was used by delineating the outer and inner contour of 2D images and then combining them to generate the 3D model. Models generated from these methods were compared to the reference standard generated using the mechanical contact scans of the denuded bone. The second aim was achieved using CT and MRI scans of five ovine femora and segmenting them using the multilevel threshold method. A surface geometric comparison was conducted between CT based, MRI based and reference models. To quantitatively compare the 1.5T images to the 3T MRI images, the right lower limbs of five healthy volunteers were scanned using scanners from the same manufacturer. The images obtained using the identical protocols were compared by means of SNR and contrast to noise ratio (CNR) of muscle, bone marrow and bone. In order to correct the step artefact in the final 3D models, the step was simulated in five ovine femora scanned with a 3T MRI scanner. The step was corrected using the iterative closest point (ICP) algorithm based aligning method. The present study demonstrated that the multi-threshold approach in combination with the threshold selection method can generate 3D models from long bones with an average deviation of 0.18 mm. The same was 0.24 mm of the single threshold method. There was a significant statistical difference between the accuracy of models generated by the two methods. In comparison, the Canny edge detection method generated average deviation of 0.20 mm. MRI based models exhibited 0.23 mm average deviation in comparison to the 0.18 mm average deviation of CT based models. The differences were not statistically significant. 3T MRI improved the contrast in the bone–muscle interfaces of most anatomical regions of femora and tibiae, potentially improving the inaccuracies conferred by poor contrast of the articular regions. Using the robust ICP algorithm to align the 3D surfaces, the step artefact that occurred by the volunteer moving the leg was corrected, generating errors of 0.32 ± 0.02 mm when compared with the reference standard. The study concludes that magnetic resonance imaging, together with simple multilevel thresholding segmentation, is able to produce 3D models of long bones with accurate geometric representations. The method is, therefore, a potential alternative to the current gold standard CT imaging.
Resumo:
Modelling activities in crowded scenes is very challenging as object tracking is not robust in complicated scenes and optical flow does not capture long range motion. We propose a novel approach to analyse activities in crowded scenes using a “bag of particle trajectories”. Particle trajectories are extracted from foreground regions within short video clips using particle video, which estimates long range motion in contrast to optical flow which is only concerned with inter-frame motion. Our applications include temporal video segmentation and anomaly detection, and we perform our evaluation on several real-world datasets containing complicated scenes. We show that our approaches achieve state-of-the-art performance for both tasks.
Resumo:
The finite element (FE) analysis is an effective method to study the strength and predict the fracture risk of endodontically-treated teeth. This paper presents a rapid method developed to generate a comprehensive tooth FE model using data retrieved from micro-computed tomography (μCT). With this method, the inhomogeneity of material properties of teeth was included into the model without dividing the tooth model into different regions. The material properties of the tooth were assumed to be related to the mineral density. The fracture risk at different tooth portions was assessed for root canal treatments. The micro-CT images of a tooth were processed by a Matlab software programme and the CT numbers were retrieved. The tooth contours were obtained with thresholding segmentation using Amira. The inner and outer surfaces of the tooth were imported into Solidworks and a three-dimensional (3D) tooth model was constructed. An assembly of the tooth model with the periodontal ligament (PDL) layer and surrounding bone was imported into ABAQUS. The material properties of the tooth were calculated from the retrieved CT numbers via ABAQUS user's subroutines. Three root canal geometries (original and two enlargements) were investigated. The proposed method in this study can generate detailed 3D finite element models of a tooth with different root canal enlargements and filling materials, and would be very useful for the assessment of the fracture risk at different tooth portions after root canal treatments.
Resumo:
As the nonprofit sector moves into a more competitive environment it is being required by the community to become more efficient and effective. One response is for nonprofit organisations to become market oriented, which is the familiar response in the for-profit sector. Two components of market orientation, that is market segmentation and customer oriented products, fit well within the peculiarities of a nonprofit organisation. This is usually accompanied by the desire to obtain a competitive advantage causes problems for various stakeholders within the organisation. This paper contends that three factors, management, scarcity of resources, and conflict between organisational objectives and market orientation, are major influences on the adoption of a market oriented culture for a nonprofit organisation.
Resumo:
Purpose – The purpose of this paper is to segment primary male grocery shoppers based on store and product attribute evaluations. A rich profile for each segment is developed. These developed contemporary shopper typologies are contrasted against earlier works. Design/methodology/approach – Data of 280 male grocery shoppers was attained by a survey questionnaire. Factor analysis, cluster analysis and ANOVA were employed to develop specific segments of male shoppers. Findings – Four distinct cohorts of male shoppers emerge from the data of eight constructs, measured by 46 items. One new shopper type, not found in earlier typology literature, emerged from this research. This shopper presented as young, well educated, at the commencement of their career and family lifecycle, attracted by a strong value offer and willingness to share the family food shopping responsibilities. Practical implications – Research outcomes encourage supermarket retailers to implement targeted marketing and rationalized operational strategies that deliver on attributes of importance. Originality/value – This research makes a contribution to segmentation literature and grocery retail practice in several ways. It presents the first retail typology of male supermarket shoppers, employing a cluster analysis technique. The research provides insights into the modern family food shopping behaviour of men, a channel in which men are now recognised as equal contributors. The research provides the basis for further gender comparative and cross-contextual studies.
Resumo:
3D models of long bones are being utilised for a number of fields including orthopaedic implant design. Accurate reconstruction of 3D models is of utmost importance to design accurate implants to allow achieving a good alignment between two bone fragments. Thus for this purpose, CT scanners are employed to acquire accurate bone data exposing an individual to a high amount of ionising radiation. Magnetic resonance imaging (MRI) has been shown to be a potential alternative to computed tomography (CT) for scanning of volunteers for 3D reconstruction of long bones, essentially avoiding the high radiation dose from CT. In MRI imaging of long bones, the artefacts due to random movements of the skeletal system create challenges for researchers as they generate inaccuracies in the 3D models generated by using data sets containing such artefacts. One of the defects that have been observed during an initial study is the lateral shift artefact occurring in the reconstructed 3D models. This artefact is believed to result from volunteers moving the leg during two successive scanning stages (the lower limb has to be scanned in at least five stages due to the limited scanning length of the scanner). As this artefact creates inaccuracies in the implants designed using these models, it needs to be corrected before the application of 3D models to implant design. Therefore, this study aimed to correct the lateral shift artefact using 3D modelling techniques. The femora of five ovine hind limbs were scanned with a 3T MRI scanner using a 3D vibe based protocol. The scanning was conducted in two halves, while maintaining a good overlap between them. A lateral shift was generated by moving the limb several millimetres between two scanning stages. The 3D models were reconstructed using a multi threshold segmentation method. The correction of the artefact was achieved by aligning the two halves using the robust iterative closest point (ICP) algorithm, with the help of the overlapping region between the two. The models with the corrected artefact were compared with the reference model generated by CT scanning of the same sample. The results indicate that the correction of the artefact was achieved with an average deviation of 0.32 ± 0.02 mm between the corrected model and the reference model. In comparison, the model obtained from a single MRI scan generated an average error of 0.25 ± 0.02 mm when compared with the reference model. An average deviation of 0.34 ± 0.04 mm was seen when the models generated after the table was moved were compared to the reference models; thus, the movement of the table is also a contributing factor to the motion artefacts.
Resumo:
Treatment plans for conformal radiotherapy are based on an initial CT scan. The aim is to deliver the prescribed dose to the tumour, while minimising exposure to nearby organs. Recent advances make it possible to also obtain a Cone-Beam CT (CBCT) scan, once the patient has been positioned for treatment. A statistical model will be developed to compare these CBCT scans with the initial CT scan. Changes in the size, shape and position of the tumour and organs will be detected and quantified. Some progress has already been made in segmentation of prostate CBCT scans [1],[2],[3]. However, none of the existing approaches have taken full advantage of the prior information that is available. The planning CT scan is expertly annotated with contours of the tumour and nearby sensitive objects. This data is specific to the individual patient and can be viewed as a snapshot of spatial information at a point in time. There is an abundance of studies in the radiotherapy literature that describe the amount of variation in the relevant organs between treatments. The findings from these studies can form a basis for estimating the degree of uncertainty. All of this information can be incorporated as an informative prior into a Bayesian statistical model. This model will be developed using scans of CT phantoms, which are objects with known geometry. Thus, the accuracy of the model can be evaluated objectively. This will also enable comparison between alternative models.
Resumo:
Purpose. To evaluate the use of optical coherence tomography (OCT) to assess the effect of different soft contact lenses on corneoscleral morphology. Methods. Ten subjects had anterior segment OCT B-scans taken in the morning and again after six hours of soft contact lens wear. For each subject, three different contact lenses were used in the right eye on non-consecutive days, including a hydrogel sphere, a silicone hydrogel sphere and a silicone hydrogel toric. After image registration and layer segmentation, analyses were performed of the first hyper-reflective layer (HRL), the epithelial basement membrane (EBL) and the epithelial thickness (HRL to EBL). A root mean square difference (RMSD) of the layer profiles and the thickness change between the morning and afternoon measurements, was used to assess the effect of the contact lens on the corneoscleral morphology. Results. The soft contact lenses had a statistically significant effect on the morphology of the anterior segment layers (p <0.001). The average amounts of change for the three lenses (average RMSD values) for the corneal region were lower (3.93±1.95 µm for the HRL and 4.02±2.14 µm for the EBL) than those measured in the limbal/scleral region (11.24±6.21 µm for the HRL and 12.61±6.42 µm for the EBL). Similarly, averaged across the three lenses, the RMSD in epithelial thickness was lower in the cornea (2.84±0.84 µm) than the limbal/scleral (5.47±1.71 µm) region. Post-hoc analysis showed that ocular surface changes were significantly smaller with the silicone hydrogel sphere lens than both the silicone hydrogel toric (p<0.005) and hydrogel sphere (p<0.02) for the combined HRL and EBL data. Conclusions. In this preliminary study, we have shown that soft contact lenses can produce small but significant changes in the morphology of the limbal/scleral region and that OCT technology is useful in assessing these changes. The clinical significance of these changes is yet to be determined.
Resumo:
The cause of upper-crustal segmentation into rhomb-shaped, shear zone-bound domains associated with contractional sedimentary basins in hot, wide orogens is not well understood. Here we use scaled multilayered analogue experiments to investigate the role of an orogen-parallel crustal-strength gradient on the formation of such structures. We show that the aspect ratio and size of domains, the sinuous character and abundance of transpressional shear zones vary with the integrated mechanical strength of crust. Upper-crustal deformation patterns and the degree of strain localization in the experiments are controlled by the ratio between the brittle and ductile strength in the model crust as well as gradients in tectonic and buoyancy forces. The experimental results match the first-order kinematic and structural characteristics of the southern Central Andes and provide insight on the dynamics of underlying deformation patterns in hot, wide orogens.
Resumo:
The purpose of this paper is to segment male and female grocery shoppers based on store and product attribute evaluations. A rich profile for each segment is developed. Gender comparisons are operationalised and these developed contemporary shopper typologies are further contrasted against earlier works. Data of 560 grocery shoppers was attained by a survey questionnaire. Factor analysis, cluster analysis and ANOVA were employed to develop specific segments of shoppers. Four distinct cohorts of male shoppers and three cohorts of female shoppers emerge from the data of eight constructs, measured by 46 items. One new shopper type, not found in earlier typology literature, emerged from this research. This shopper presented as a young, well educated, at the commencement of their career and family lifecycle, attracted by a strong value offer and willingness to share the family food shopping responsibilities. This research makes a contribution to segmentation literature and grocery retail practice in several ways. It presents the first retail typology of male supermarket shoppers, employing a cluster analysis technique. Comparisons between male and female grocery shopping typologies are accordingly facilitated. The research provides insights into the modern family food shopping behaviour of men; a channel in which men are now recognised as equal contributors. Research outcomes encourage supermarket retailers to implement targeted marketing and rationalized operational strategies that deliver on attributes of importance. Finally, this research provides the basis for further cross-cultural, cross-contextual comparative studies.
Resumo:
The adaptation of market segmentation to political communication is identified here as a neglected explanation for why young people often figure in popular political debates as both the cause and symptom of declining social values and civic participation. New media also contribute to public anxiety because they enable new forms of mediated civic engagement and disrupt the capacity of transmission media to bind nations. Declining engagement with news media is used as an index of young peoples' lack of civic-mindedness but, as research surveyed and reported here shows, this trend away from orthodox news forms is apparent across all age groups, not just youth. This article makes the case for public debate, informed by research that addresses the substantive problems of transforming democracy.