211 resultados para SURROGATE LIFE CYCLE
Resumo:
There is widespread recognition that higher education institutions (HEIs) must actively support commencing students to ensure equity in access to the opportunities afforded by higher education. This role is particularly critical for students who because of educational, cultural or financial disadvantage or because they are members of social groups currently under-represented in higher education, may require additional transitional support to “level the playing field.” The challenge faced by HEIs is to provide this “support” in a way that is integrated into regular teaching and learning practices and reaches all commencing students. The Student Success Program (SSP) is an intervention in operation at the Queensland University of Technology (QUT) designed to identify and support those students deemed to be at risk of disengaging from their learning and their institution. Two sets of evidence of the impact of the SSP are presented: First, its expansion (a) from a one-faculty pilot project (Nelson, Duncan & Clarke, 2009) to all faculties and (b) into a variety of applications mirroring the student life cycle; and second, an evaluation of the impact of the SSP on students exposed to it. The outcomes suggest that: the SSP is an example of good practice that can be successfully applied to a variety of learning contexts and student enrolment situations; and the impact of the intervention on student persistence is sustained for at least 12 months and positively influences student retention. It is claimed that the good practice evidenced by the SSP is dependent on its integration into the broader First Year Experience Program at QUT as an example of transition pedagogy in action.
Resumo:
Construction 2020 is a national initiative undertaken by CRC for Construction Innovation to focus its ongoing leadership of the Australian property and construction industry in applied research and best contribute to the industry's national and international growth and competitiveness. It is the first major report on the long-term outlook for the industry since the late 1990s. The report identifies nine key themes for the future of the property and construction industry. These visions describe the major concerns of the industry and the improved future working environment favoured by its stakeholders. The first and clearest vision, agreed across the industry, is that environmentally sustainable construction the creation of buildings and infrastructure that minimise their impact on the natural environment is an area of huge potential. Here technologies like Construction Innovation's LCADesign can make a big difference. This is a calculator that works out automatically from 3D computer-aided design the environmental costs of materials in a building all at the push of a button. By working with industry, we'd expect to have a comprehensive set of eco-design tools for all stages of the construction life cycle, to minimise energy use, greenhouse and other forms of waste or pollution. Other significant areas of focus in the report include the development of nationally uniform codes of practice, new tools to evaluate design and product performance, comparisons with overseas industries, and a worldwide research network to ensure that Australian technology is at the cutting edge.
Resumo:
The modern society has come to expect the electrical energy on demand, while many of the facilities in power systems are aging beyond repair and maintenance. The risk of failure is increasing with the aging equipments and can pose serious consequences for continuity of electricity supply. As the equipments used in high voltage power networks are very expensive, economically it may not be feasible to purchase and store spares in a warehouse for extended periods of time. On the other hand, there is normally a significant time before receiving equipment once it is ordered. This situation has created a considerable interest in the evaluation and application of probability methods for aging plant and provisions of spares in bulk supply networks, and can be of particular importance for substations. Quantitative adequacy assessment of substation and sub-transmission power systems is generally done using a contingency enumeration approach which includes the evaluation of contingencies, classification of the contingencies based on selected failure criteria. The problem is very complex because of the need to include detailed modelling and operation of substation and sub-transmission equipment using network flow evaluation and to consider multiple levels of component failures. In this thesis a new model associated with aging equipment is developed to combine the standard tools of random failures, as well as specific model for aging failures. This technique is applied in this thesis to include and examine the impact of aging equipments on system reliability of bulk supply loads and consumers in distribution network for defined range of planning years. The power system risk indices depend on many factors such as the actual physical network configuration and operation, aging conditions of the equipment, and the relevant constraints. The impact and importance of equipment reliability on power system risk indices in a network with aging facilities contains valuable information for utilities to better understand network performance and the weak links in the system. In this thesis, algorithms are developed to measure the contribution of individual equipment to the power system risk indices, as part of the novel risk analysis tool. A new cost worth approach was developed in this thesis that can make an early decision in planning for replacement activities concerning non-repairable aging components, in order to maintain a system reliability performance which economically is acceptable. The concepts, techniques and procedures developed in this thesis are illustrated numerically using published test systems. It is believed that the methods and approaches presented, substantially improve the accuracy of risk predictions by explicit consideration of the effect of equipment entering a period of increased risk of a non-repairable failure.
Resumo:
Reliable infrastructure assets impact significantly on quality of life and provide a stable foundation for economic growth and competitiveness. Decisions about the way assets are managed are of utmost importance in achieving this. Timely renewal of infrastructure assets supports reliability and maximum utilisation of infrastructure and enables business and community to grow and prosper. This research initially examined a framework for asset management decisions and then focused on asset renewal optimisation and renewal engineering optimisation in depth. This study had four primary objectives. The first was to develop a new Asset Management Decision Framework (AMDF) for identifying and classifying asset management decisions. The AMDF was developed by applying multi-criteria decision theory, classical management theory and life cycle management. The AMDF is an original and innovative contribution to asset management in that: · it is the first framework to provide guidance for developing asset management decision criteria based on fundamental business objectives; · it is the first framework to provide a decision context identification and analysis process for asset management decisions; and · it is the only comprehensive listing of asset management decision types developed from first principles. The second objective of this research was to develop a novel multi-attribute Asset Renewal Decision Model (ARDM) that takes account of financial, customer service, health and safety, environmental and socio-economic objectives. The unique feature of this ARDM is that it is the only model to optimise timing of asset renewal with respect to fundamental business objectives. The third objective of this research was to develop a novel Renewal Engineering Decision Model (REDM) that uses multiple criteria to determine the optimal timing for renewal engineering. The unique features of this model are that: · it is a novel extension to existing real options valuation models in that it uses overall utility rather than present value of cash flows to model engineering value; and · it is the only REDM that optimises timing of renewal engineering with respect to fundamental business objectives; The final objective was to develop and validate an Asset Renewal Engineering Philosophy (AREP) consisting of three principles of asset renewal engineering. The principles were validated using a novel application of real options theory. The AREP is the only renewal engineering philosophy in existence. The original contributions of this research are expected to enrich the body of knowledge in asset management through effectively addressing the need for an asset management decision framework, asset renewal and renewal engineering optimisation based on fundamental business objectives and a novel renewal engineering philosophy.
Resumo:
Today, polarisation of the fashion textile industry has already begun as smart, intelligent and conscientious fashion emerges as a backlash to the experience of choice fatigue, poor quality, dumb design and greenwash. But the process, development and manufacture of fashion textiles is complex. And the demand, both customer and industry driven, for new integrated product policies,2 designed to minimise environmental impacts by looking at all phases of a product's life cycle, is problematic due to complexity and a lack of networking tools. This article explores these issues through the construct of the department store of the future.
Resumo:
Buildings and infrastructure represent principal assets of any national economy as well as prime sources of environmental degradation. Making them more sustainable represents a key challenge for the construction, planning and design industries and governments at all levels; and the rapid urbanisation of the 21st century has turned this into a global challenge. This book embodies the results of a major research programme by members of the Australia Co-operative Research Centre for Construction Innovation and its global partners, presented for an international audience of construction researchers, senior professionals and advanced students. It covers four themes, applied to regeneration as well as to new build, and within the overall theme of Innovation: Sustainable Materials and Manufactures, focusing on building material products, their manufacture and assembly – and the reduction of their ecological ‘fingerprints’, the extension of their service lives, and their re-use and recyclability. It also explores the prospects for applying the principles of the assembly line. Virtual Design, Construction and Management, viewed as increasing sustainable development through automation, enhanced collaboration (such as virtual design teams), real time BL performance assessment during design, simulation of the construction process, life-cycle management of project information (zero information loss) risk minimisation, and increased potential for innovation and value adding. Integrating Design, Construction and Facility Management over the Project Life Cycle, by converging ICT, design science engineering and sustainability science. Integration across spatial scales, enabling building–infrastructure synergies (such as water and energy efficiency). Convergences between IT and design and operational processes are also viewed as a key platform increased sustainability.
Resumo:
The concept of constructability uses integration art of individual functions through a valuable and timely construction inputs into planning and design development stages. It results in significant savings in cost and time needed to finalize infrastructure projects. However, available constructability principles, developed by CII Australia (1993), do not cover Operation and Maintenance (O&M) phases of projects, whilst major cost and time in multifaceted infrastructure projects are spent in post-occupancy stages. This paper discusses the need to extend the constructability concept by examining current O&M issues in the provision of multifaceted building projects. It highlights available O&M problems and shortcomings of building projects, as well as their causes and reasons in different categories. This initial categorization is an efficient start point for testing probable present O&M issues in various cases of complex infrastructure building projects. This preliminary categorization serve as a benchmark to develop an extended constructability model that considers the whole project life cycle phases rather than a specific phase. It anticipates that the development of an extended constructability model can reduce significant number of reworks, mistakes, extra costs and time wasted during delivery stages of multifaceted building projects.
Resumo:
In asset intensive industries such as mining, oil & gas, utilities etc. most of the capital expenditure happens on acquiring engineering assets. Process of acquiring assets is called as “Procurement” or “Acquisition”. An asset procurement decision should be taken in consideration with the installation, commissioning, operational, maintenance and disposal needs of an asset or spare. However, such cross-functional collaboration and communication does not appear to happen between engineering, maintenance, warehousing and procurement functions in many asset intensive industries. Acquisition planning and execution are two distinct parts of asset acquisition process. Acquisition planning or procurement planning is responsible for determining exactly what is required to be purchased. It is important that an asset acquisition decision is the result of cross-functional decision making process. An acquisition decision leads to a formal purchase order. Most costly asset decisions occur even before they are acquired. Therefore, acquisition decision should be an outcome of an integrated planning & decision making process. Asset intensive organizations both, Government and non Government in Australia spent AUD 102.5 Billion on asset acquisition in year 2008-09. There is widespread evidence of many assets and spare not being used or utilized and in the end are written off. This clearly shows that many organizations end up buying assets or spares which were not required or non-conforming to the needs of user functions. It is due the fact that strategic and software driven procurement process do not consider all the requirements from various functions within the organization which contribute to the operation and maintenance of the asset over its life cycle. There is a lot of research done on how to implement an effective procurement process. There are numerous software solutions available for executing a procurement process. However, not much research is done on how to arrive at a cross functional procurement planning process. It is also important to link procurement planning process to procurement execution process. This research will discuss ““Acquisition Engineering Model” (AEM) framework, which aims at assisting acquisition decision making based on various criteria to satisfy cross-functional organizational requirements. Acquisition Engineering Model (AEM) will consider inputs from corporate asset management strategy, production management, maintenance management, warehousing, finance and HSE. Therefore, it is essential that the multi-criteria driven acquisition planning process is carried out and its output is fed to the asset acquisition (procurement execution) process. An effective procurement decision making framework to perform acquisition planning which considers various functional criteria will be discussed in this paper.
Resumo:
Plasmodium spp. parasites cause malaria in 300 to 500 million individuals each year. Disease occurs during the blood-stage of the parasite’s life cycle, where the parasite is thought to replicate exclusively within erythrocytes. Infected individuals can also suffer relapses after several years, from Plasmodium vivax and Plasmodium ovale surviving in hepatocytes. Plasmodium falciparum and Plasmodium malariae can also persist after the original bout of infection has apparently cleared in the blood, suggesting that host cells other than erythrocytes (but not hepatocytes) may harbor these blood-stage parasites, thereby assisting their escape from host immunity. Using blood stage transgenic Plasmodium berghei-expressing GFP (PbGFP) to track parasites in host cells, we found that the parasite had a tropism for CD317+ dendritic cells. Other studies using confocal microscopy, in vitro cultures, and cell transfer studies showed that blood-stage parasites could infect, survive, and replicate within CD317+ dendritic cells, and that small numbers of these cells released parasites infectious for erythrocytes in vivo. These data have identified a unique survival strategy for blood-stage Plasmodium, which has significant implications for understanding the escape of Plasmodium spp. from immune-surveillance and for vaccine development.
Resumo:
Research found that today’s organisations are increasingly aware of the potential barriers and perceived challenges associated with the successful delivery of change — including cultural and sub-cultural indifferences; financial constraints; restricted timelines; insufficient senior management support; fragmented key stakeholder commitment; and inadequate training. The delivery and application of Innovative Change (see glossary) within a construction industry organisation tends to require a certain level of ‘readiness’. This readiness is the combination of an organisation’s ability to part from undertakings that may be old, traditional, or inefficient; and then being able to readily adopt a procedure or initiative which is new, improved, or more efficient. Despite the construction industry’s awareness of the various threats and opportunities associated with the delivery of change, research found little attention is currently given to develop a ‘decision-making framework’ that comprises measurable elements (dynamics) that may assist in more accurately determining an organisation’s level of readiness or ability to deliver innovative change. To resolve this, an initial Background Literature Review in 2004 identified six such dynamics, those of Change, Innovation, Implementation, Culture, Leadership, and Training and Education, which were then hypothesised to be key components of a ‘Conceptual Decision-making Framework’ (CDF) for delivering innovative change within an organisation. To support this hypothesis, a second (more extensive) Literature Review was undertaken from late 2007 to mid 2009. A Delphi study was embarked on in June 2008, inviting fifteen building and construction industry members to form a panel and take part in a Delphi study. The selection criterion required panel members to have senior positions (manager and above) within a recognised field or occupation, and to have experience, understanding and / or knowledge in the process of delivering change within organisations. The final panel comprised nine representatives from private and public industry organisations and tertiary / research and development (R&D) universities. The Delphi study developed, distributed and collated two rounds of survey questionnaires over a four-month period, comprising open-ended and closed questions (referred to as factors). The first round of Delphi survey questionnaires were distributed to the panel in August 2008, asking them to rate the relevancy of the six hypothesised dynamics. In early September 2008, round-one responses were returned, analysed and documented. From this, an additional three dynamics were identified and confirmed by the panel as being highly relevant during the decision-making process when delivering innovative change within an organisation. The additional dynamics (‘Knowledge-sharing and Management’; ‘Business Process Requirements’; and ‘Life-cycle Costs’) were then added to the first six dynamics and used to populate the second (final) Delphi survey questionnaire. This was distributed to the same nine panel members in October 2008, this time asking them to rate the relevancy of all nine dynamics. In November 2008, round-two responses were returned, analysed, summarised and documented. Final results confirmed stability in responses and met Delphi study guidelines. The final contribution is twofold. Firstly, findings confirm all nine dynamics as key components of the proposed CDF for delivering innovative change within an organisation. Secondly, the future development and testing of an ‘Innovative Change Delivery Process’ (ICDP) is proposed, one that is underpinned by an ‘Innovative Change Decision-making Framework’ (ICDF), an ‘Innovative Change Delivery Analysis’ (ICDA) program, and an ‘Innovative Change Delivery Guide’ (ICDG).
Resumo:
Measuring the business value that Internet technologies deliver for organisations has proven to be a difficult and elusive task, given their complexity and increased embeddedness within the value chain. Yet, despite the lack of empirical evidence that links the adoption of Information Technology (IT) with increased financial performance, many organisations continue to adopt new technologies at a rapid rate. This is evident in the widespread adoption of Web 2.0 online Social Networking Services (SNSs) such as Facebook, Twitter and YouTube. These new Internet based technologies, widely used for social purposes, are being employed by organisations to enhance their business communication processes. However, their use is yet to be correlated with an increase in business performance. Owing to the conflicting empirical evidence that links prior IT applications with increased business performance, IT, Information Systems (IS), and E-Business Model (EBM) research has increasingly looked to broader social and environmental factors as a means for examining and understanding the broader influences shaping IT, IS and E-Business (EB) adoption behaviour. Findings from these studies suggest that organisations adopt new technologies as a result of strong external pressures, rather than a clear measure of enhanced business value. In order to ascertain if this is the case with the adoption of SNSs, this study explores how organisations are creating value (and measuring that value) with the use of SNSs for business purposes, and the external pressures influencing their adoption. In doing so, it seeks to address two research questions: 1. What are the external pressures influencing organisations to adopt SNSs for business communication purposes? 2. Are SNSs providing increased business value for organisations, and if so, how is that value being captured and measured? Informed by the background literature fields of IT, IS, EBM, and Web 2.0, a three-tiered theoretical framework is developed that combines macro-societal, social and technological perspectives as possible causal mechanisms influencing the SNS adoption event. The macro societal view draws on the concept of Castells. (1996) network society and the behaviour of crowds, herds and swarms, to formulate a new explanatory concept of the network vortex. The social perspective draws on key components of institutional theory (DiMaggio & Powell, 1983, 1991), and the technical view draws from the organising vision concept developed by Swanson and Ramiller (1997). The study takes a critical realist approach, and conducts four stages of data collection and one stage of data coding and analysis. Stage 1 consisted of content analysis of websites and SNSs of many organisations, to identify the types of business purposes SNSs are being used for. Stage 2 also involved content analysis of organisational websites, in order to identify suitable sample organisations in which to conduct telephone interviews. Stage 3 consisted of conducting 18 in-depth, semi-structured telephone interviews within eight Australian organisations from the Media/Publishing and Galleries, Libraries, Archives and Museum (GLAM) industries. These sample organisations were considered leaders in the use of SNSs technologies. Stage 4 involved an SNS activity count of the organisations interviewed in Stage 3, in order to rate them as either Advanced Innovator (AI) organisations, or Learning Focussed (LF) organisations. A fifth stage of data coding and analysis of all four data collection stages was conducted, based on the theoretical framework developed for the study, and using QSR NVivo 8 software. The findings from this study reveal that SNSs have been adopted by organisations for the purpose of increasing business value, and as a result of strong social and macro-societal pressures. SNSs offer organisations a wide range of value enhancing opportunities that have broader benefits for customers and society. However, measuring the increased business value is difficult with traditional Return On Investment (ROI) mechanisms, ascertaining the need for new value capture and measurement rationales, to support the accountability of SNS adoption practices. The study also identified the presence of technical, social and macro-societal pressures, all of which influenced SNS adoption by organisations. These findings contribute important theoretical insight into the increased complexity of pressures influencing technology adoption rationales by organisations, and have important practical implications for practice, by reflecting the expanded global online networks in which organisations now operate. The limitations of the study include the small number of sample organisations in which interviews were conducted, its limited generalisability, and the small range of SNSs selected for the study. However, these were compensated in part by the expertise of the interviewees, and the global significance of the SNSs that were chosen. Future research could replicate the study to a larger sample from different industries, sectors and countries. It could also explore the life cycle of SNSs in a longitudinal study, and map how the technical, social and macro-societal pressures are emphasised through stages of the life cycle. The theoretical framework could also be applied to other social fad technology adoption studies.
Resumo:
This paper focuses on information sharing with key suppliers and seeks to explore the factors that might influence its extent and depth. We also investigate how information sharing affects a company’s performance with regards to resource usage, output, and flexibility. Drawing from transaction cost- and contingency theories, several factors, namely environmental uncertainty, demand uncertainty, dependency and, the product life cycle stage are proposed to explain the level of information shared with key suppliers. We develop a model where information sharing mediates the (contingent) factors and company performance. A mail survey was used to collect data from Finnish and Swedish companies. Partial Least Squares analysis was separately performed for each country (n=119, n=102). There was consistent evidence that environmental uncertainty, demand uncertainty and supplier/buyer dependency had explanatory power, whereas no significance was found for the product life cycle stage. The results also confirm previous studies by providing support for a positive relationship between information sharing and performance, where output performance was found to be the most strongly related
Resumo:
This paper focuses on information sharing with key suppliers and seeks to explore the factors that might influence its extent and depth. We also investigate how information sharing affects a company’s performance with regards to resource usage, output, and flexibility. Drawing from transaction cost- and contingency theories, several factors, namely environmental uncertainty, demand uncertainty, dependency and, the product life cycle stage are proposed to explain the level of information shared with key suppliers. We develop a model where information sharing mediates the (contingent) factors and company performance. A mail survey was used to collect data from Finnish and Swedish companies. Partial Least Squares analysis was separately performed for each country (n=119, n=102). There was consistent evidence that environmental uncertainty, demand uncertainty and supplier/buyer dependency had explanatory power, whereas no significance was found for the relationship between product life cycle stage and information sharing. The results also confirm previous studies by providing support for a positive relationship between information sharing and performance, where output performance was found to be the most strongly related.
Resumo:
Purpose: Important performance objectives manufacturers sought can be achieved through adopting the appropriate manufacturing practices. This paper presents a conceptual model proposing relationship between advanced quality practices, perceived manufacturing difficulties and manufacturing performances. Design/methodology/approach: A survey-based approach was adopted to test the hypotheses proposed in this study. The selection of research instruments for inclusion in this survey was based on literature review, the pilot case studies and relevant industrial experience of the author. A sample of 1000 manufacturers across Australia was randomly selected. Quality managers were requested to complete the questionnaire, as the task of dealing with the quality and reliability issues is a quality manager’s major responsibility. Findings: Evidence indicates that product quality and reliability is the main competitive factor for manufacturers. Design and manufacturing capability and on time delivery came second. Price is considered as the least important factor for the Australian manufacturers. Results show that collectively the advanced quality practices proposed in this study neutralize the difficulties manufacturers face and contribute to the most performance objectives of the manufacturers. The companies who have put more emphasize on the advanced quality practices have less problem in manufacturing and better performance in most manufacturing performance indices. The results validate the proposed conceptual model and lend credence to hypothesis that proposed relationship between quality practices, manufacturing difficulties and manufacturing performances. Practical implications: The model shown in this paper provides a simple yet highly effective approach to achieving significant improvements in product quality and manufacturing performance. This study introduces a relationship based ‘proactive’ quality management approach and provides great potential for managers and engineers to adopt the model in a wide range of manufacturing organisations. Originality/value: Traditional ways of checking product quality are different types of testing, inspection and screening out bad products after manufacturing them. In today’s manufacturing where product life cycle is very short, it is necessary to focus on not to manufacturing them first rather than screening out the bad ones. This study introduces, for the first time, the idea of relationship based advanced quality practices (AQP) and suggests AQPs will enable manufacturers to develop reliable products and minimize the manufacturing anomalies. This paper explores some of the attributes of AQP capable of reducing manufacturing difficulties and improving manufacturing performances. The proposed conceptual model contributes to the existing knowledge base of quality practices and subsequently provides impetus and guidance towards increasing manufacturing performance.
Resumo:
Highway construction works have significant bearings on all aspects of sustainability. As they typically involve huge capital funds, stakeholders tend to place all interests on the financial justifications of the project, especially when embedding sustainability principles and practices may demand significant initial investment. Increasing public awareness and government policies demand that infrastructure projects respond to environmental challenges and people start to realise the negative consequences of not to pursue sustainability. Stakeholders are now keen to identify sustainable alternatives and financial implications of including them on a whole lifecycle basis. Therefore tools that aid the evaluation of investment options, such as provision of environmentally sustainable features in roads and highways, are highly desirable. Life-cycle cost analysis (LCCA) is generally recognised as a valuable approach for investment decision making for construction works. However to date it has limited application because the current LCCA models tend to focus on economic issues alone and are not able to deal with sustainability factors. This paper reports a research on identifying sustainability related factors in highway construction projects, in quantitative and qualitative forms of a multi-criteria analysis. These factors are then incorporated into existing LCCA models to produce a new sustainability based LCCA model with cost elements specific to sustainability measures. This presents highway project stakeholders a practical tool to evaluate investment decisions and reach an optimum balance between financial viability and sustainability deliverables.