153 resultados para Rivero, Atanasio, d. 1930
Resumo:
The Quantitative Assessment of Solar UV [ultraviolet] Exposure for Vitamin D Synthesis in Australian Adults (AusD) Study aimed to better define the relationship between sun exposure and serum 25-hydroxyvitamin D (25(OH)D) concentration. Cross-sectional data were collected between May 2009 and December 2010 from 1,002 participants aged 18-75 years in 4 Australian sites spanning 24° of latitude. Participants completed the following: 1) questionnaires on sun exposure, dietary vitamin D intake, and vitamin D supplementation; 2) 10 days of personal ultraviolet radiation dosimetry; 3) a sun exposure and physical activity diary; and 4) clinical measurements and blood collection for 25(OH)D determination. Our multiple regression model described 40% of the variance in 25(OH)D concentration; modifiable behavioral factors contributed 52% of the explained variance, and environmental and demographic or constitutional variables contributed 38% and 10%, respectively. The amount of skin exposed was the single strongest contributor to the explained variance (27%), followed by location (20%), season (17%), personal ultraviolet radiation exposure (8%), vitamin D supplementation (7%), body mass index (weight (kg)/height (m)2) (4%), and physical activity (4%). Modifiable behavioral factors strongly influence serum 25(OH)D concentrations in Australian adults. In addition, latitude was a strong determinant of the relative contribution of different behavioral factors.
Resumo:
Frondosins A−E, 1−5 (Figure 1), are a family of related marine sesquiterpenoids first isolated in their dextro-rotatory form from the sponge Dysidea frondosa.(1a) Additionally, levo-rotatory frondosins A and D were isolated from an unidentified Eurospongia species.(1b) Frondosins A−E are compounds of interest due to their promising interleukin-8 (IL-8) affinity and protein kinase C inhibition.(1a) IL-8 antagonists are of particular interest in view of their antiinflammatory,(2a) anti-HIV,(1b, 2b) and antitumor(2c-2f) properties. To date, frondosins A, B, and C have been synthesized.(3) Notwithstanding these successes, the frondosins have proved quite a formidable synthetic challenge, and as of yet, there has been no synthesis of frondosin D or E. In this report, we describe our approaches to the molecular scaffold of frondosins D. This work has culminated in a very effective means of producing the trimethylbicyclo[5.4.0]undecane ring system common to all frondosins (shown in bold, Figure 1).
Resumo:
This paper reports on an investigation of the flow/chemistry coupling inside a nominally two-dimensional inlet-fuelled scramjet configuration. The experiments were conducted at a freestream Mach number of 7.3 and a total flow enthalpy of 4.3MJ/kg corresponding to a Mach 9.7 flight condition. The phenomenon of radical-farming has been studied in detail using two-dimensional OH* chemiluminescence imaging and emission spectroscopy. High signal levels of excited OH (OH*) were detected behind the first shock reflections inside the combustion chamber upstream of any measurable pressure rise from combustion, which occurred towards the rear of the combustor. The production of OH in the first hot pocket initiates the ignition process and then accelerates the combustion process in the next downstream hot pocket. This was confirmed by numerical simulations of premixed hydrogen/air flow through the scramjet. Chemical kinetics analyses reveal that the ignition process is governed by the interaction between various reaction groups leading to a chainbranching explosion for low mean temperature and pressure combustion flowfields.
Resumo:
By combining gene design and heterologous over-expression of Rhodotorula gracilis D-amino acid oxidase (RgDAO) in Pichia pastoris, enzyme production was enhanced by one order of magnitude compared to literature benchmarks, giving 350 kUnits/l of fed-batch bioreactor culture with a productivity of 3.1 kUnits/l h. P. pastoris cells permeabilized by freeze-drying and incubation in 2-propanol (10% v/v) produce a highly active (1.6 kUnits/g dry matter) and stable oxidase preparation. Critical bottlenecks in the development of an RgDAO catalyst for industrial applications have been eliminated.
Resumo:
Trigonopsis variabilis D-amino acid oxidase (TvDAO) is a well characterized enzyme used for cephalosporin C conversion on industrial scale. However, the demands on the enzyme with respect to activity, operational stability and costs also vary with the field of application. Processes that use the soluble enzyme suffer from fast inactivation of TvDAO while immobilized oxidase preparations raise issues related to expensive carriers and catalyst efficiency. Therefore, oxidase preparations that are more robust and active than those currently available would enable a much broader range of economically viable applications of this enzyme in fine chemical syntheses. A multi-step engineering approach was chosen here to develop a robust and highly active Pichia pastoris TvDAO whole-cell biocatalyst. As compared to the native T. variabilis host, a more than seven-fold enhancement of the intracellular level of oxidase activity was achieved in P. pastoris through expression optimization by codon redesign as well as efficient subcellular targeting of the enzyme to peroxisomes. Multi copy integration further doubled expression and the specific activity of the whole cell catalyst. From a multicopy production strain, about 1.3 x 103 U/g wet cell weight (wcw) were derived by standard induction conditions feeding pure methanol. A fed-batch cultivation protocol using a mixture of methanol and glycerol in the induction phase attenuated the apparent toxicity of the recombinant oxidase to yield final biomass concentrations in the bioreactor of >or= 200 g/L compared to only 117 g/L using the standard methanol feed. Permeabilization of P. pastoris using 10% isopropanol yielded a whole-cell enzyme preparation that showed 49% of the total available intracellular oxidase activity and was notably stabilized (by three times compared to a widely used TvDAO expressing Escherichia coli strain) under conditions of D-methionine conversion using vigorous aeration. Stepwise optimization using a multi-level engineering approach has delivered a new P. pastoris whole cell TvDAO biocatalyst showing substantially enhanced specific activity and stability under operational conditions as compared to previously reported preparations of the enzyme. The production of the oxidase through fed-batch bioreactor culture and subsequent cell permeabilization is high-yielding and efficient. Therefore this P. pastoris catalyst has been evaluated for industrial purposes.
Resumo:
The role of vascularization in 3-D tissue engineering was studied. Mouse fat, angiogenic growth factors, adult human stem cells and fat tissue have been inserted and subsequent tissue growth was monitored. Human fat grafts or human lipoaspirates in SCID mouse chambers induced mouse fat generation at 6 weeks. Tissue engineering models utilizing intrinsic vascularization have major advantages including rapid and appropriate vascularization of new tissues.
Resumo:
Background Research has identified associations between serum 25(OH)D and a range of clinical outcomes in chronic kidney disease and wider populations. The present study aimed to investigate vitamin D deficiency/insufficiency in dialysis patients and the relationship with vitamin D intake and sun exposure. Methods A cross-sectional study was used. Participants included 30 peritoneal dialysis (PD) (43.3% male; 56.87 ± 16.16 years) and 26 haemodialysis (HD) (80.8% male; 63.58 ± 15.09 years) patients attending a department of renal medicine. Explanatory variables were usual vitamin D intake from diet/supplements (IU day−1) and sun exposure (min day−1). Vitamin D intake, sun exposure and ethnic background were assessed by questionnaire. Weight, malnutrition status and routine biochemistry were also assessed. Data were collected during usual department visits. The main outcome measure was serum 25(OH)D (nm). Results Prevalence of inadequate/insufficient vitamin D intake differed between dialysis modality, with 31% and 43% found to be insufficient (<50 nm) and 4% and 33% found to be deficient (<25 nm) in HD and PD patients, respectively (P < 0.001). In HD patients, there was a correlation between diet and supplemental vitamin D intake and 25(OH)D (ρ = 0.84, P < 0.001) and average sun exposure and 25(OH)D (ρ = 0.50, P < 0.02). There were no associations in PD patients. The results remained significant for vitamin D intake after multiple regression, adjusting for age, gender and sun exposure. Conclusions The results highlight a strong association between vitamin D intake and 25(OH)D in HD but not PD patients, with implications for replacement recommendations. The findings indicate that, even in a sunny climate, many dialysis patients are vitamin D deficient, highlighting the need for exploration of determinants and consequences.
Resumo:
Among the clay minerals, montmorillonite is the most extensively studied material using as adsorbents, but palygorskite and its organically modified products have been least explored for their potential use in contaminated water remediation. In this study, an Australian palygorskite was modified with cationic surfactants octadecyl trimethylammonium bromide and dioctadecyl dimethylammonium bromide at different doses. A full structural characterization of prepared organo-palygorskite by X-ray diffraction, infrared spectroscopy, surface analysis and thermogravimetric analysis was performed. The morphological changes of palygorskite before and after modification were recorded using scanning electron microscopy, which showed the surfactant molecules can attach on the surface of rod-like crystals and thus can weaken the interactions between palygorskite single crystals. Real surfactants loadings on organo-palygorskites were also calculated based on thermogravimetric analysis. 1 CEC, 2 CEC octadecyl trimethylammonium bromide modified palygorskites, 1 CEC and 2 CEC dioctadecyl dimethylammonium bromide modified palygorskites absorbed as much as 12 mg/g, 42 mg/g, 9 mg/g and 25 mg/g of 2,4- dichlorophenoxyacetic acid respectively. This study has shown a potential on organo-palygorskites for organic herbicide adsorption especially anionic ones from waste water. In addition, equilibration time effects and the Langmuir and Freundlich models fitting were also investigated in details.
Resumo:
The synthesis and characterization of solution processable donor-acceptor-donor (D-A-D) based conjugated molecules with varying ratios of thiophene as donor (D) and benzothiadiazole as acceptor (A) are reported. Optical, electrochemical, thermal, morphological and organic thin film transistor (OTFT) device properties of these materials were investigated. The thermal and polarized optical microscope analysis indicates that the materials having higher D/A ratios exhibit both liquid crystalline (LC) and OTFT behavior. AFM analysis of the materials having D/A ratios of 3 and 4 (3T1B and 4T1B) show well ordered structures, resulting from strong π-π interchain interactions compared to the other molecules in this study. A XRD patterns for 3T1B and 4T1B thin films also shows high crystalline ordering. Solution processed OTFTs of 3T1B and 4T1B have shown un-optimized charge carrier mobilities of 2 × 10 -2 cm 2 V -1 s -1 and 4 × 10 -3 cm 2 V -1 s -1, respectively on bare Si/SiO 2 substrate.
Resumo:
New push-pull copolymers based on thiophene (donor) and benzothiadiazole (acceptor) units, poly[4,7-bis(3-dodecylthiophene-2-yl) benzothiadiazole-co- thiophene] (PT3B1) and poly[4,7-bis(3-dodecylthiophene-2-yl) benzothiadiazole-co-benzothiadiazole] (PT2B2), are designed and synthesized via Stille and Suzuki coupling routes respectively. Gel permeation chromatography shows the number average molecular weights are 31100 and 8400 g mol-1 for the two polymers, respectively. Both polymers have shown absorption throughout a wide range of the UV-vis region, from 300 to 650 nm. A significant red shift of the absorption edge is observed in thin films compared to solution of the copolymers; the optical band gap is in the range of 1.7 to 1.8 eV. Cyclic voltammetry indicates reversible oxidation and reduction processes with HOMO energy levels calculated to be in the range of 5.2 to 5.4 eV. Upon testing both materials for organic field-effect transistors (OFETs), PT3B1 showed a hole mobility of 6.1 × 10-4 cm2 V-1 s -1, while PT2B2 did not show any field effect transport. Both copolymers displayed a photovoltaic response when combined with a methanofullerene as an electron acceptor. The best performance was achieved when the copolymer PT3B1 was blended with [70]PCBM in a 1:4 ratio, exhibiting a short-circuit current of 7.27 mA cm-2, an open circuit voltage of 0.85 V, and a fill factor of 41% yielding a power conversion efficiency of 2.54% under simulated air mass (AM) 1.5 global (1.5 G) illumination conditions (100 mW cm-2). Similar devices utilizing PT2B2 in place of PT3B1 demonstrated reduced performance with a short-circuit current of 4.8 mA cm -2, an open circuit voltage of 0.73 V, and a fill factor of 30% resulting in a power conversion efficiency of roughly 1.06%.
Resumo:
Firstly, we would like to thank Ms. Alison Brough and her colleagues for their positive commentary on our published work [1] and their appraisal of our utility of the “off-set plane” protocol for anthropometric analysis. The standardized protocols described in our manuscript have wide applications, ranging from forensic anthropology and paleodemographic research to clinical settings such as paediatric practice and orthopaedic surgical design. We affirm that the use of geometrically based reference tools commonly found in computer aided design (CAD) programs such as Geomagic Design X® are imperative for more automated and precise measurement protocols for quantitative skeletal analysis. Therefore we stand by our recommendation of the use of software such as Amira and Geomagic Design X® in the contexts described in our manuscript...