136 resultados para Range ecology
Resumo:
The painted apple moth (PAM), Teia anartoides (Walker) (Lepidoptera: Lymantriidae) made a recent incursion into New Zealand. A nucleopolyhedrovirus (NPV), Orgyia anartoides NPV (OranNPV), originally isolated from PAM in Australia, was tested for its pathogenicity to PAM and a range of non-target insect species found in New Zealand, to evaluate its suitability as a microbial control for this insect invader. Dosage-mortality tests showed that OranNPV was highly pathogenic to PAM larvae; mean LT50 values for third instars ranged from 17.9 to 8.1 days for doses from 102 to 105 polyhedral inclusion bodies/larva, respectively. The cause of death in infected insects was confirmed as OranNPV. Molecular analysis established that OranNPV can be identified by PCR and restriction digestion, and this process complemented microscopic examination of infected larvae. No lymantriid species occur in New Zealand; however, the virus had no significant effects on species from five other lepidopteran families (Noctuidae, Tortricidae, Geometridae, Nymphalidae and Plutellidae) or on adult honeybees. Thus, all indications from this initial investigation are that OranNPV would be an important tool in the control of PAM in a future incursion of this species into New Zealand.
Resumo:
Hypsipyla grandella and Hypsipyla robusta are serious pests of species of the subfamily Swietenioideae of the family Meliaceae in virtually every moist tropical region of the world. An international workshop reviewed the ecology and control of Hypsipyla shoot borers of Meliaceae, identified promising control methods, and set priorities for future research. The conclusions of the workshop are presented with specific recommendations for research in aspects of the taxonomy, biology, and ecology of Hypsipyla, and pest management options that use host plant resistance and chemical, biological, and silvicultural control
Resumo:
This paper reports profiling information for speeding offenders and is part of a larger project that assessed the deterrent effects of increased speeding penalties in Queensland, Australia, using a total of 84,456 speeding offences. The speeding offenders were classified into three groups based on the extent and severity of an index offence: once-only low-rang offenders; repeat high-range offenders; and other offenders. The three groups were then compared in terms of personal characteristics, traffic offences, crash history and criminal history. Results revealed a number of significant differences between repeat high-range offenders and those in the other two offender groups. Repeat high-range speeding offenders were more likely to be male, younger, hold a provisional and a motorcycle licence, to have committed a range of previous traffic offences, to have a significantly greater likelihood of crash involvement, and to have been involved in multiple-vehicle crashes than drivers in the other two offender types. Additionally, when a subset of offenders’ criminal histories were examined, results revealed that repeat high-range speeding offenders were also more likely to have committed a previous criminal offence compared to once only low-range and other offenders and that 55.2% of the repeat high-range offenders had a criminal history. They were also significantly more likely to have committed drug offences and offences against order than the once only low-range speeding offenders, and significantly more likely to have committed regulation offences than those in the other offenders group. Overall, the results indicate that speeding offenders are not an homogeneous group and that, therefore, more tailored and innovative sanctions should be considered and evaluated for high-range recidivist speeders because they are a high-risk road user group.
Resumo:
Abstract: Australia’s ecosystems are the basis of our current and future prosperity, and our national well-being.A strong and sustainable Australian ecosystem science enterprise is vital for understanding and securing these ecosystems in the face of current and future challenges. This Plan defines the vision and key directions for a national ecosystem science capability that will enable Australia to understand and effectively manage its ecosystems for decades to come.The Plan’s underlying theme is that excellent science supports a range of activities, including public engagement, that enable us to understand and maintain healthy ecosystems.Those healthy ecosystems are the cornerstone of our social and economic well-being.The vision guiding the development of this Plan is that in 20 years’ time the status of Australian ecosystems and how they change will be widely reported and understood, and the prosperity and well-being they provide will be secure. To enable this, Australia’s national ecosystem science capability will be coordinated, collaborative and connected.The Plan is based on an extensive set of collaboratively generated proposals from national town hall meetings that also formthe basis for its implementation. Some directions within the Plan are for the Australian ecosystem science community itself to implement, others will involve the users of ecosystem science and the groups that fund ecosystem science.We identify six equal priority areas for action to achieve our vision: (i) delivering maximum impact for Australia: enhancing relationships between scientists and end-users; (ii) supporting long-termresearch; (iii) enabling ecosystem surveillance; (iv) making the most of data resources; (v) inspiring a generation: empowering the public with knowledge and opportunities; (vi) facilitating coordination, collaboration and leadership. This shared vision will enable us to consolidate our current successes, overcome remaining barriers and establish the foundations to ensure Australian ecosystem science delivers for the future needs of Australia..
Resumo:
In male tephritid fruit flies of the genus Bactrocera, feeding on secondary plant compounds (sensu lato male lures = methyl eugenol, raspberry ketone and zingerone) increases male mating success. Ingested male lures alter the male pheromonal blend, normally making it more attractive to females and this is considered the primary mechanism for the enhanced mating success. However, the male lures raspberry ketone and zingerone are known, across a diverse range of other organisms, to be involved in increasing energy metabolism. If this also occurs in Bactrocera, then this may represent an additional benefit to males as courtship is metabolically expensive and lure feeding may increase a fly's short-term energy. We tested this hypothesis by performing comparative RNA-seq analysis between zingerone-fed and unfed males of Bactrocera tryoni. We also carried out behavioural assays with zingerone- and cuelure-fed males to test whether they became more active. RNA-seq analysis revealed, in zingerone-fed flies, up-regulation of 3183 genes with homologues transcripts to those known to regulate intermale aggression, pheromone synthesis, mating and accessory gland proteins, along with significant enrichment of several energy metabolic pathways and gene ontology terms. Behavioural assays show significant increases in locomotor activity, weight reduction and successful mating after mounting; all direct/indirect measures of increased activity. These results suggest that feeding on lures leads to complex physiological changes, which result in more competitive males. These results do not negate the pheromone effect, but do strongly suggest that the phytochemical-induced sexual selection is governed by both female preference and male competitive mechanisms.
Resumo:
Bayesian networks (BNs) are graphical probabilistic models used for reasoning under uncertainty. These models are becoming increasing popular in a range of fields including ecology, computational biology, medical diagnosis, and forensics. In most of these cases, the BNs are quantified using information from experts, or from user opinions. An interest therefore lies in the way in which multiple opinions can be represented and used in a BN. This paper proposes the use of a measurement error model to combine opinions for use in the quantification of a BN. The multiple opinions are treated as a realisation of measurement error and the model uses the posterior probabilities ascribed to each node in the BN which are computed from the prior information given by each expert. The proposed model addresses the issues associated with current methods of combining opinions such as the absence of a coherent probability model, the lack of the conditional independence structure of the BN being maintained, and the provision of only a point estimate for the consensus. The proposed model is applied an existing Bayesian Network and performed well when compared to existing methods of combining opinions.
Resumo:
Aboveground–belowground interactions exert critical controls on the composition and function of terrestrial ecosystems, yet the fundamental relationships between plant diversity and soil microbial diversity remain elusive. Theory predicts predominantly positive associations but tests within single sites have shown variable relationships, and associations between plant and microbial diversity across broad spatial scales remain largely unexplored. We compared the diversity of plant, bacterial, archaeal and fungal communities in one hundred and forty-five 1 m2 plots across 25 temperate grassland sites from four continents. Across sites, the plant alpha diversity patterns were poorly related to those observed for any soil microbial group. However, plant beta diversity (compositional dissimilarity between sites) was significantly correlated with the beta diversity of bacterial and fungal communities, even after controlling for environmental factors. Thus, across a global range of temperate grasslands, plant diversity can predict patterns in the composition of soil microbial communities, but not patterns in alpha diversity.
Resumo:
Aim Large-scale patterns linking energy availability, biological productivity and diversity form a central focus of ecology. Despite evidence that the activity and abundance of animals may be limited by climatic variables associated with regional biological productivity (e.g. mean annual precipitation and annual actual evapotranspiration), it is unclear whether plant–granivore interactions are themselves influenced by these climatic factors across broad spatial extents. We evaluated whether climatic conditions that are known to alter the abundance and activity of granivorous animals also affect rates of seed removal. Location Eleven sites across temperate North America. Methods We used a common protocol to assess the removal of the same seed species (Avena sativa) over a 2-day period. Model selection via the Akaike information criterion was used to determine a set of candidate binomial generalized linear mixed models that evaluated the relationship between local climatic data and post-dispersal seed predation. Results Annual actual evapotranspiration was the single best predictor of the proportion of seeds removed. Annual actual evapotranspiration and mean annual precipitation were both positively related to mean seed removal and were included in four and three of the top five models, respectively. Annual temperature range was also positively related to seed removal and was an explanatory variable in three of the top four models. Main conclusions Our work provides the first evidence that energy and precipitation, which are known to affect consumer abundance and activity, also translate to strong, predictable patterns of seed predation across a continent. More generally, these findings suggest that future changes in temperature and precipitation could have widespread consequences for plant species composition in grasslands, through impacts on plant recruitment.
Resumo:
This paper considers the epistemological life cycle of the camera lens in documentary practices. The 19th century industrial economies that manufactured and commercialised the camera lens have engendered political and economic contingencies on documentary practices to sustain a hegemonic and singular interpretive epistemology. Colonial documentary practices are considered from the viewpoint of manipulative hegemonic practices - all of which use the interpretive epistemology of the camera lens to capitalise a viewpoint which is singular and possesses the power to sustain its own status and economic privilege. I suggest that decolonising documentary practices can be nurtured in what Boaventura de Sousa Santos proposes as an 'ecology of knowledges' (Andreotti, Ahenakew, & Cooper 2011) - a way of including the epistemologies of cultures beyond the 'abyssal' (Santos), outside the limits of epistemological dominance. If an 'epistemicide' (Santos) of indigenous knowledges in the dominant limits has occurred then in an ecology of knowledges the limits become limitless and what were once invisible knowledges, come into their own ontological and epistemological being: as free agents and on their own terms. In an ecology of knowledges, ignorance and blindness may still exist but are not privileged. The decolonisation of documentary practices inevitably destabilises prevailing historicities and initiates ways for equal privilege to exist between multiple epistemologies.
Resumo:
We investigated effects of roost loss due to clear-fell harvest on bat home range. The study took place in plantation forest, inhabited by the New Zealand long-tailed bat (Chalinolobus tuberculatus), in which trees are harvested between the ages 26-32 years. We determined home ranges by radiotracking different bats in areas that had and had not been recently clear-fell harvested. Home ranges were smaller in areas that had been harvested. Adult male bats selected 20-25 year old stands within home ranges before and after harvest. Males selected edges with open unplanted areas when harvest had not occurred but no longer selected these at proportions greater than their availability post harvest, probably because they were then readily available. This is the first radiotracking study to demonstrate a change in home range size and selection concomitant with felling of large areas of plantation forest, and thus quantify negative effects of forestry operations on this speciose group. The use of smaller home ranges post-harvest may reflect smaller colony sizes and lower roost availability, both of which may increase isolation of colonies and vulnerability to local extinction.
Resumo:
This thesis explored the utility of long-range stereo visual odometry for application on Unmanned Aerial Vehicles. Novel parameterisations and initialisation routines were developed for the long-range case of stereo visual odometry and new optimisation techniques were implemented to improve the robustness of visual odometry in this difficult scenario. In doing so, the applications of stereo visual odometry were expanded and shown to perform adequately in situations that were previously unworkable.