114 resultados para Radiation-use efficiency
Resumo:
This study aims to help broaden the use of electronic portal imaging devices (EPIDs) for pre-treatment patient positioning verification, from photon-beam radiotherapy to photon- and electron-beam radiotherapy, by proposing and testing a method for acquiring clinicallyuseful EPID images of patient anatomy using electron beams, with a view to enabling and encouraging further research in this area. EPID images used in this study were acquired using all available beams from a linac configured to deliver electron beams with nominal energies of 6, 9, 12, 16 and 20 MeV, as well as photon beams with nominal energies of 6 and 10 MV. A widely-available heterogeneous, approximately-humanoid, thorax phantom was used, to provide an indication of the contrast and noise produced when imaging different types of tissue with comparatively realistic thicknesses. The acquired images were automatically calibrated, corrected for the effects of variations in the sensitivity of individual photodiodes, using a flood field image. For electron beam imaging, flood field EPID calibration images were acquired with and without the placement of blocks of water-equivalent plastic (with thicknesses approximately equal to the practical range of electrons in the plastic) placed upstream of the EPID, to filter out the primary electron beam, leaving only the bremsstrahlung photon signal. While the electron beam images acquired using a standard (unfiltered) flood field calibration were observed to be noisy and difficult to interpret, the electron beam images acquired using the filtered flood field calibration showed tissues and bony anatomy with levels of contrast and noise that were similar to the contrast and noise levels seen in the clinically acceptable photon beam EPID images. The best electron beam imaging results (highest contrast, signal-to-noise and contrast-to-noise ratios) were achieved when the images were acquired using the higher energy electron beams (16 and 20 MeV) when the EPID was calibrated using an intermediate (12 MeV) electron beam energy. These results demonstrate the feasibility of acquiring clinically-useful EPID images of patient anatomy using electron beams and suggest important avenues for future investigation, thus enabling and encouraging further research in this area. There is manifest potential for the EPID imaging method proposed in this work to lead to the clinical use of electron beam imaging for geometric verification of electron treatments in the future.
Resumo:
Purpose Peer-review programmes in radiation oncology are used to facilitate the process and evaluation of clinical decision-making. However, web-based peer-review methods are still uncommon. This study analysed an inter-centre, web-based peer-review case conference as a method of facilitating the decision-making process in radiation oncology. Methodology A benchmark form was designed based on the American Society for Radiation Oncology targets for radiation oncology peer review. This was used for evaluating the contents of the peer-review case presentations on 40 cases, selected from three participating radiation oncology centres. A scoring system was used for comparison of data, and a survey was conducted to analyse the experiences of radiation oncology professionals who attended the web-based peer-review meetings in order to identify priorities for improvement. Results The mean scores for the evaluations were 82·7, 84·5, 86·3 and 87·3% for cervical, prostate, breast and head and neck presentations, respectively. The survey showed that radiation oncology professionals were confident about the role of web-based peer-reviews in facilitating sharing of good practice, stimulating professionalism and promoting professional growth. The participants were satisfied with the quality of the audio and visual aspects of the web-based meeting. Conclusion The results of this study suggest that simple inter-centre web-based peer-review case conferences are a feasible technique for peer review in radiation oncology. Limitations such as data security and confidentiality can be overcome by the use of appropriate structure and technology. To drive the issues of quality and safety a step further, small radiotherapy departments may need to consider web-based peer-review case conference as part of their routine quality assurance practices.
Resumo:
Road transport plays a significant role in various industries and mobility services around the globe and has a vital impact on our daily lives. However it also has serious impacts on both public health and the environment. In-vehicle feedback systems are a relatively new approach to encouraging driver behaviour change for improving fuel efficiency and safety in automotive environments. While many studies claim that the adoption of eco-driving practices, such as eco-driving training programs and in-vehicle feedback to drivers, has the potential to improve fuel efficiency, limited research has integrated safety and eco-driving. Therefore, this research seeks to use human factors related theories and practices to inform the design and evaluation of an in-vehicle Human Machine Interface (HMI) providing real-time driver feedback with the aim of improving both fuel efficiency and safety.
Resumo:
Aim This study assessed the association between compression use and changes in lymphoedema observed in women with breast cancer-related lymphoedema who completed a 12 week exercise intervention. Methods This work uses data collected from a 12 week exercise trial, whereby women were randomly allocated into either aerobic-based only (n=21) or resistance-based only (n=20) exercise. Compression use during the trial was at the participant’s discretion. Differences in lymphoedema (measured by L-Dex score and inter-limb circumference difference [%]) and associated symptoms between those who wore, and did not wear compression during the 12 week intervention were assessed. We also explored participants’ reasons surrounding compression during exercise. Results No significant interaction effect between time and compression use for lymphoedema was observed. There was no difference between groups over time in the number or severity of lymphoedema symptoms. Irrespective of compression use, there were trends for reductions in the proportion of women reporting severe symptoms, but lymphoedema status did not change. Individual reasons for the use of compression, or lack thereof, varied markedly. Conclusion Our findings demonstrated an absence of a positive or negative effect from compression use during exercise on lymphoedema. Current and previous findings suggest the clinical recommendation that garments must be worn during exercise is questionable, and its application requires an individualised approach.
Resumo:
Parabens, benzophenone-3 and triclosan are common ingredients used as preservatives, ultraviolet radiation filters and antimicrobial agents, respectively. Human exposure occurs through consumption of processed food and use of cosmetics and consumer products. The aim of this study was to provide a preliminary characterisation of exposure to selected personal care product chemicals in the general Australian population. De-identified urine specimens stratified by age and sex were obtained from a community-based pathology laboratory and pooled (n= 24 pools of 100). Concentrations of free and total (sum of free plus conjugated) species of methyl, ethyl, propyl and butyl paraben, benzophenone-3 and triclosan were quantified using isotope dilution tandem mass spectrometry; with geometric means 232, 33.5, 60.6, 4.32, 61.5 and 87.7. ng/mL, respectively. Age was inversely associated with paraben concentration, and females had concentrations approximately two times higher than males. Total paraben and benzophenone-3 concentrations are significantly higher than reported worldwide, and the average triclosan concentration was more than one order of magnitude higher than in many other populations. This study provides the first data on exposure of the general Australian population to a range of common personal care product chemical ingredients, which appears to be prevalent and warrants further investigation.
Resumo:
The Children’s Cancer Institute in Sydney recently launched an ambitious program. From early next year, scientists will analyse the unique cancer cells of 12 children diagnosed with the most aggressive forms of the disease to find the best treatment for each child. By 2020, they aim to have these individualised treatment options available to all children diagnosed with cancers that have a less than 30% survival rate. This way of tailoring treatment to each person is known as personalised medicine, and advances in DNA sequencing have paved the way for a new era in cancer management.
Resumo:
Targeted nanomedicines offer a strategy for greatly enhancing accumulation of a therapeutic within a specific tissue in animals. In this study, we report on the comparative targeting efficiency toward prostate-specific membrane antigen (PSMA) of a number of different ligands that are covalently attached by the same chemistry to a polymeric nanocarrier. The targeting ligands included a small molecule (glutamate urea), a peptide ligand, and a monoclonal antibody (J591). A hyperbranched polymer (HBP) was utilized as the nanocarrier and contained a fluorophore for tracking/analysis, whereas the pendant functional chain-ends provided a handle for ligand conjugation. Targeting efficiency of each ligand was assessed in vitro using flow cytometry and confocal microscopy to compare degree of binding and internalization of the HBPs by human prostate cancer (PCa) cell lines with different PSMA expression status (PC3-PIP (PSMA+) and PC3-FLU (PSMA−). The peptide ligand was further investigated in vivo, in which BALB/c nude mice bearing subcutaneous PC3-PIP and PC3-FLU PCa tumors were injected intravenously with the HBP-peptide conjugate and assessed by fluorescence imaging. Enhanced accumulation in the tumor tissue of PC3-PIP compared to PC3-FLU highlighted the applicability of this system as a future imaging and therapeutic delivery vehicle.
Resumo:
Considering the growing energy needs and concern for environmental degradation, clean and inexhaustible energy sources, e.g solar energy are receiving greater attention for various applications. The use of solar energy systems for low temperature applications reduces the burden on conventional fossil fuels and has little or no harmful effects on the environment. The performance of a solar system depends to a great extent on the collector used for the conversion of solar radiant energy to thermal energy. A solar evaporatorcollector (SEC) is basically an unglazed flat plate collector where refrigerant, like R134a, is used as the working fluid. As the operating temperature of SEC is very low, it collects energy both from solar irradiation and ambient energy leading to a much higher efficiency than the conventional collectors. The capability of SEC to utilize ambient energy also enables the system to operate at night. Therefore it is not appropriate to use for the evaluation of performance of SEC by conventional efficiency equation where ambient energy and condensation is not considered as energy input in addition to irradiation. In the National University of Singapore, several Solar Assisted Heat Pump (SAHP) systems were built for the evaluation of performance under the metrological condition of Singapore for thermal applications of desalination and SEC was the main component to harness renewable energy. In this paper, the design and performance of SEC are explored. Furthermore, an attempt is made to develop an efficiency equation for SEC and maximum efficiency attained 98% under the meteorological condition of Singapore.
Resumo:
Once the ugly duckling of the lighting world, the fluorescent bulb recently has become something of an eco-darling thanks to its energy efficiency. Whereas a standard off-the-shelf incandescent bulb devotes only about five percent of its total electrical consumption to produce visible light (the remainder is released in heat), fluorescent lighting employs an entirely different process (it radiates rather than burns) that is four to six times more efficient. Fluorescents are indisputably superior in performance, but up to 5 milligrams of mercury, a hazardous trace metal, is included in the manufacture of each lamp