146 resultados para Quantenchemie, Mukherjee Multireferenz-Coupled-Cluster, Analytische Gradienten, Parallelisierung, Biradikale
Resumo:
A single plant cell was modeled with smoothed particle hydrodynamics (SPH) and a discrete element method (DEM) to study the basic micromechanics that govern the cellular structural deformations during drying. This two-dimensional particle-based model consists of two components: a cell fluid model and a cell wall model. The cell fluid was approximated to a highly viscous Newtonian fluid and modeled with SPH. The cell wall was treated as a stiff semi-permeable solid membrane with visco-elastic properties and modeled as a neo-Hookean solid material using a DEM. Compared to existing meshfree particle-based plant cell models, we have specifically introduced cell wall–fluid attraction forces and cell wall bending stiffness effects to address the critical shrinkage characteristics of the plant cells during drying. Also, a moisture domain-based novel approach was used to simulate drying mechanisms within the particle scheme. The model performance was found to be mainly influenced by the particle resolution, initial gap between the outermost fluid particles and wall particles and number of particles in the SPH influence domain. A higher order smoothing kernel was used with adaptive smoothing length to improve the stability and accuracy of the model. Cell deformations at different states of cell dryness were qualitatively and quantitatively compared with microscopic experimental findings on apple cells and a fairly good agreement was observed with some exceptions. The wall–fluid attraction forces and cell wall bending stiffness were found to be significantly improving the model predictions. A detailed sensitivity analysis was also done to further investigate the influence of wall–fluid attraction forces, cell wall bending stiffness, cell wall stiffness and the particle resolution. This novel meshfree based modeling approach is highly applicable for cellular level deformation studies of plant food materials during drying, which characterize large deformations.
Resumo:
Optimisation is a fundamental step in the turbine design process, especially in the development of non-classical designs of radial-inflow turbines working with high-density fluids in low-temperature Organic Rankine Cycles (ORCs). The present work discusses the simultaneous optimisation of the thermodynamic cycle and the one-dimensional design of radial-inflow turbines. In particular, the work describes the integration between a 1D meanline preliminary design code adapted to real gases and the performance estimation approach for radial-inflow turbines in an established ORC cycle analysis procedure. The optimisation approach is split in two distinct loops; the inner operates on the 1D design based on the parameters received from the outer loop, which optimises the thermodynamic cycle. The method uses parameters including brine flow rate, temperature and working fluid, shifting assumptions such as head and flow coefficients into the optimisation routine. The discussed design and optimisation method is then validated against published benchmark cases. Finally, using the same conditions, the coupled optimisation procedure is extended to the preliminary design of a radial-inflow turbine with R143a as working fluid in realistic geothermal conditions and compared against results from commercially-available software RITAL from Concepts-NREC.
Resumo:
The putative role of the N-terminal region of rhodopsin-like 7 transmembrane biogenic amine receptors in agonist-induced signaling has not yet been clarified despite recent advances in 7 transmembrane receptor structural biology. Given the existence of N-terminal nonsynonymous polymorphisms (R6G;E42G) within the HTR2B gene in a drug-abusing population, we assessed whether these polymorphisms affect 5-hydroxytryptamine 2B (5-HT2B) receptor in vitro pharmacologic and coupling properties in transfected COS-7 cells. Modification of the 5-HT2B receptor N terminus by the R6G;E42G polymorphisms increases such agonist signaling pathways as inositol phosphate accumulation as assessed by either classic or operational models. The N-terminal R6G;E42G mutations of the 5-HT2B receptor also increase cell proliferation and slow its desensitization kinetics compared with the wild-type receptor, further supporting a role for the N terminus in transduction efficacy. Furthermore, by coexpressing a tethered wild-type 5-HT2B receptor N terminus with a 5-HT2B receptor bearing a N-terminal deletion, we were able to restore original coupling. This reversion to normal activity of a truncated 5-HT2B receptor by coexpression of the membrane-tethered wild-type 5-HT2B receptor N terminus was not observed using a membrane-tethered 5-HT2B receptor R6G;E42G N terminus. These data suggest that the N terminus exerts a negative control over basal as well as agonist-stimulated receptor activity that is lost in the R6G;E42G mutant. Our findings reveal a new and unanticipated role of the 5-HT2B receptor N terminus as a negative modulator, affecting both constitutive and agonist-stimulated activity. Moreover, our data caution against excluding the N terminus and extracellular loops in structural studies of this 7 transmembrane receptor family
Resumo:
Immigrant entrepreneurs tend to start businesses within their ethnic enclave (EE), as it is an integral part of their social and cultural context and the location where ethnic resources reside (Logan, Alba, & Stults, 2003). Ethnic enclaves can be seen as a form of geographic cluster, China Towns are exemplar EEs, easily identified by the clustering of Chinese restaurants and other ethnic businesses in one central location. Studies on EE thus far have neglected the life cycles stages of EE and its impact on the business experiences of the entrepreneurs. In this paper, we track the formation, growth and decline of an EE. We argue that EE is a special industrial cluster and as such it follows the growth conditions proposed by the cluster life cycle theory (Menzel & Fornahl, 2009). We report a mixed method study of Chinese Restaurants in South East Queensland. Based on multiple sources of data, we concluded that changes in government policies leading to a sharp increase of immigrant numbers from a distinctive culture group can lead to the initiation and growth of the EE. Continuous incoming of new immigrants and increase competition within the cluster mark the mature stage of the EE, making the growth condition more favourable “inside” the cluster. A decline in new immigrants from the same ethnic group and the increased competition within the EE may eventually lead to the decline of such an industrial cluster, thus providing more favorable condition for growth of business outside the cluster.
Resumo:
This research established innovative methods and a predictive model to evaluate water quality using the trace element and heavy metal concentrations of drinking water from the greater Brisbane area. Significantly, the combined use of Inductively Coupled Plasma - Mass Spectrometry and Chemometrics can be used worldwide to provide comprehensive, rapid and affordable analyses of elements in drinking water that can have a considerable impact on human health.
Resumo:
Previous studies showed that a significant number of the particles present in indoor air are generated by cooking activities, and measured particle concentrations and exposures have been used to estimate the related human dose. The dose evaluation can be affected by the particle charge level which is usually not considered in particle deposition models. To this purpose, in this paper we show, for the very first time, the electric charge of particles generated during cooking activities and thus extending the interest on particle charging characterization to indoor micro-environments, so far essentially focused on outdoors. Particle number, together with positive and negative cluster ion concentrations, was monitored using a condensation particle counter and two air ion counters, respectively, during different cooking events. Positively-charged particle distribution fractions during gas combustion, bacon grilling, and eggplant grilling events were measured by two Scanning Mobility Particle Sizer spectrometers, used with and without a neutralizer. Finally, a Tandem Differential Mobility Analyzer was used to measure the charge specific particle distributions of bacon and eggplant grilling experiments, selecting particles of 30, 50, 80 and 100 nm in mobility diameter. The total fraction of positively-charged particles was 4.0%, 7.9%, and 5.6% for gas combustion, bacon grilling, and eggplant grilling events, respectively, then lower than other typical outdoor combustion-generated particles.
Resumo:
We show that the cluster ion concentration (CIC) in the atmosphere is significantly suppressed during events that involve rapid increases in particle number concentration (PNC). Using a neutral cluster and air ion spectrometer, we investigated changes in CIC during three types of particle enhancement processes – new particle formation, a bushfire episode and an intense pyrotechnic display. In all three cases, the total CIC decreased with increasing PNC, with the rate of decrease being greater for negative CIC than positive. We attribute this to the greater mobility, and hence the higher attachment coefficient, of negative ions over positive ions in the air. During the pyrotechnic display, the rapid increase in PNC was sufficient to reduce the CIC of both polarities to zero. At the height of the display, the negative CIC stayed at zero for a full 10 min. Although the PNCs were not significantly different, the CIC during new particle formation did not decrease as much as during the bushfire episode and the pyrotechnic display. We suggest that the rate of increase of PNC, together with particle size, also play important roles in suppressing CIC in the atmosphere.
Resumo:
A one size fits all approach dominates alcohol programs in school settings (Botvin et al., 2007), which may limit program effectiveness (Snyder et al., 2004). Programs tailored to the meet the needs and wants of adolescent groups may be more effective. Limited attention has been directed towards employing a full segmentation process. Where segmentation has been examined, the focus has remained on socio-demographic characteristics and more recently psychographic variables (Mathijssen et al., 2012). The current study aimed to identify whether the addition of behaviour could be used to identify segments. Variables included attitudes towards binge drinking (α = 0.86), behavioral intentions’ (α = 0.97), perceived behavioral control (PBC), injunctive norms (α = 0.94); descriptive norms (α = 0.87), knowledge and reported behaviour. Data was collected from five schools, n = 625 (32.96% girls). Two-Step cluster analysis produced a sample (n = 625) with a silhouette measure of cohesion and separation of 0.4. The intention measure and whether students reported previously consuming alcohol were the most distinguishing characteristics - predictor importance scores of (1.0). A four segment solution emerged. The first segment (“Male abstainers” – 37.2%) featured the highest knowledge score (M: 5.9) along with the lowest-risk drinking attitudes and intentions to drink excessively. Segment 2 (“At risk drinkers” - 11.2%) were characterised by their high-risk attitudes and high-risk drinking intentions. Injunctive (M: 4.1) and descriptive norms (M: 4.9) may indicate a social environment where drinking is the norm. Segment 3 (”Female abstainers” – 25.9%) represents young girls, who have the lowest-risk attitudes and low intentions to drink excessively. The fourth and final segment (boys = 67.4%) (“Moderate drinkers” – 25.7%) all report previously drinking alcohol yet their attitudes and intentions towards excessive alcohol consumption are lower than other segments. Segmentation focuses on identifying groups of individuals who feature similar characteristics. The current study illustrates the importance of including reported behaviour in addition to psychographic and demographic characteristics to identify unique groups to inform intervention planning and design. Key messages The principle of segmentation has received limited attention in the context of school-based alcohol education programs. This research identified four segments amongst 14-16 year high school students, each of which can be targeted with a unique, tailored program to meet the needs and wants of the target audience.
Resumo:
In the Yersinia pseudotuberculosis serotyping scheme, 21 serotypes are present originating from about 30 different O-factors distributed within the species. With regard to the chemical structures of lipopolysaccharides (LPSs) and the genetic basis of their biosynthesis, a number, but not all, of Y. pseudotuberculosis strains representing different serotypes have been investigated. In order to present an overall picture of the relationship between genetics and structures, we have been working on the genetics and structures of various Y. pseudotuberculosis O-specific polysaccharides (OPSs). Here, we present a structural and genetic analysis of the Y. pseudotuberculosis serotype O:11 OPS. Our results showed that this OPS structure has the same backbone as that of Y. pseudotuberculosis O:1b, but with a 6d-l-Altf side-branch instead of Parf. The 3′ end of the gene cluster is the same as that for O:1b and has the genes for synthesis of the backbone and for processing the completed repeat unit. The 5′ end has genes for synthesis of 6d-l-Altf and its transfer to the repeating unit backbone. The pathway for the synthesis of the 6d-l-Altf appears to be different from that for 6d-l-Altp in Y. enterocolitica O:3. The chemical structure of the O:11 repeating unit is [Figure]
Resumo:
A major virulence factor for Yersinia pseudotuberculosis is lipopolysaccharide, including O-polysaccharide (OPS). Currently, the OPS based serotyping scheme for Y. pseudotuberculosis includes 21 known O-serotypes, with genetic and structural data available for 17 of them. The completion of the OPS structures and genetics of this species will enable the visualization of relationships between O-serotypes and allow for analysis of the evolutionary processes within the species that give rise to new serotypes. Here we present the OPS structure and gene cluster of serotype O:12, thus adding one more to the set of completed serotypes, and show that this serotype is present in both Y. pseudotuberculosis and the newly identified Y. similis species. The O:12 structure is shown to include two rare sugars: 4-C[(R)-1-hydroxyethyl]-3,6-dideoxy-d-xylo-hexose (d-yersiniose) and 6-deoxy-l-glucopyranose (l-quinovose). We have identified a novel putative guanine diphosphate (GDP)-l-fucose 4-epimerase gene and propose a pathway for the synthesis of GDP-l-quinovose, which extends the known GDP-l-fucose pathway.
Resumo:
The repeat unit structure of the K2 capsule from an extensively antibiotic-resistant Acinetobacter baumannii global clone 2 (GC2) strain was determined. The oligosaccharide contains three simple sugars, d-glucopyranose, d-galatopyranose and N-acetyl-d-galactosamine, and the complex sugar, 5,7-diacetamido-3,5,7,9-tetradeoxy-l-glycero-l-manno-non-2-ulosonic acid (Pse5Ac7Ac or pseudaminic acid), which has not previously been reported in any A. baumannii capsule. The strain was found to carry all the genes required for the synthesis of the sugars and construction of the K2 structure. The linkages catalyzed by the initiating transferase, three glycosyltransferases and the Wzy polymerase were also predicted. Examination of publicly available A. baumannii genome sequences revealed that the same gene cluster, KL2, often occurs in extensively antibiotic-resistant GC2 isolates and in further strain types. The gene module responsible for the synthesis of pseudaminic acid was also detected in four other K loci. A related module including genes for an acylated relative of pseudaminic acid was also found in two new KL types. A polymerase chain reaction scheme was developed to detect all modules containing genes for sugars based on pseudaminic acid and to specifically detect KL2.
Resumo:
A significant media city globally , Sydney is the production and design centre for the Australian media system and a subsidiary node of larger international systems principally headquartered in Los Angeles and London. Its media cluster is undergoing transformations to improve its position internationally by increasing capabilities and ties to other Australian and international production clusters. Sydney’s media cluster is a collection of suburbs forming an “arc” along major transport corridors stretching from Macquarie Park in the north to Sydney airport in the south. As a dispersed rather than tightly bound cluster, it is defined by the functional proximity provided by automobile and telecommunication networks Sydney’s media cluster is considered here along two dimensions—that of Sydney’s place within the ecology of Australian and international media and that of its internal organization within the geographical space of metropolitan Sydney. The first examines Sydney’s media cluster at the level of the metropolitan area of Sydney within its state, national and international contexts; while the second digs below this level to explore its working out in urban space.
Resumo:
Underground transport tunnels are vulnerable to blast events. This paper develops and applies a fully coupled technique involving the Smooth Particle Hydrodynamics and Finite Element techniques to investigate the blast response of segmented bored tunnels. Findings indicate that several bolts failed in the longitudinal direction due to redistribution of blast loading to adjacent tunnel rings. The tunnel segments respond as arch mechanisms in the transverse direction and suffered damage mainly due to high bending stresses. The novel information from the present study will enable safer designs of buried tunnels and provide a benchmark reference for future developments in this area.
Resumo:
Policy makers, urban planners and economic geographers readily acknowledge the potential value of industrial clustering. Clusters attract policy makers’ interest because it is widely held that they are a way of connecting agglomeration to innovation and human capital to investment. Urban planners view clustering as a way of enticing creative human capital, the so-called ‘creative class’, that is, creative people are predisposed to live where there is a range of cultural infrastructure and amenities. Economists and geographers have contrived to promote clustering as a solution to stalled regional development. In the People’s Republic of China, over the past decade the cluster has become the default setting of the cultural and creative industries, the latter a composite term applied to the quantifiable outputs of artists, designers and media workers as well as related service sectors such as tourism, advertising and management. The thinking behind many cluster projects is to ‘pick winners’. In this sense the rapid expansion in the number of cultural and creative clusters in China over the past decade is not so very different from the early 1990s, a period that saw an outbreak of innovation parks, most of which inevitably failed to deliver measurable innovation and ultimately served as revenue-generating sources for district governments via real estate speculation. Since the early years of the first decade of the new millennium the cluster model has been pressed into the service of cultural development.