170 resultados para Pumpkin - Osmo-convective drying


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mixed convection of a two-dimensional laminar incompressible flow along a horizontal flat plate with streamwise sinusoidal surface temperature has been numerically investigated for different values of Rayleigh number and Reynolds number for constant values of Prandtl number, amplitude and frequency of periodic temperature. The numerical scheme is based on the finite element method adapted to rectangular non-uniform mesh elements by a non-linear parametric solution algorithm. The fluid considered in this study is air. The results are obtained for the Rayleigh number and Reynolds number ranging from 102 to 104 and 1 to 100, respectively, with constant physical properties for the fluid medium considered. Velocity and temperature profiles, streamlines, isotherms, and average Nusselt numbers are presented to observe the effect of the investigating parameters on fluid flow and heat transfer characteristics. The present results show that the convective phenomena are greatly influenced by the variation of Rayleigh numbers and Reynolds number.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Materials with one-dimensional (1D) nanostructure are important for catalysis. They are the preferred building blocks for catalytic nanoarchitecture, and can be used to fabricate designer catalysts. In this thesis, one such material, alumina nanofibre, was used as a precursor to prepare a range of nanocomposite catalysts. Utilising the specific properties of alumina nanofibres, a novel approach was developed to prepare macro-mesoporous nanocomposites, which consist of a stacked, fibrous nanocomposite with a core-shell structure. Two kinds of fibrous ZrO2/Al2O3 and TiO2/Al2O3 nanocomposites were successfully synthesised using boehmite nanofibers as a hard temperate and followed by a simple calcination. The alumina nanofibres provide the resultant nanocomposites with good thermal stability and mechanical stability. A series of one-dimensional (1D) zirconia/alumina nanocomposites were prepared by the deposition of zirconium species onto the 3D framework of boehmite nanofibres formed by dispersing boehmite nanofibres into a butanol solution, followed by calcination at 773 K. The materials were characterised by X-ray diffraction (XRD), Scanning electron microscopy (SEM), Transmission electron microscope (TEM), N2 adsorption/desorption, Infrared Emission Spectroscopy (IES), and Fourier Transform Infrared spectroscopy (FT-IR). The results demonstrated that when the molar percentage, X, X=100*Zr/(Al+Zr), was > 30%, extremely long ZrO2/Al2O3 composite nanorods with evenly distributed ZrO2 nanocrystals formed on their surface. The stacking of such nanorods gave rise to a new kind of macroporous material without the use of any organic space filler\template or other specific drying techniques. The mechanism for the formation of these long ZrO2/Al2O3 composite nanorods is proposed in this work. A series of solid-superacid catalysts were synthesised from fibrous ZrO2/Al2O3 core and shell nanocomposites. In this series, the zirconium molar percentage was varied from 2 % to 50 %. The ZrO2/Al2O3 nanocomposites and their solid superacid counterparts were characterised by a variety of techniques including 27Al MAS-NMR, SEM, TEM, XPS, Nitrogen adsorption and Infrared Emission Spectroscopy. NMR results show that the interaction between zirconia species and alumina strongly correlates with pentacoordinated aluminium sites. This can also be detected by the change in binding energy of the 3d electrons of the zirconium. The acidity of the obtained superacids was tested by using them as catalysts for the benzolyation of toluene. It was found that a sample with a 50 % zirconium molar percentage possessed the highest surface acidity equalling that of pristine sulfated zirconia despite the reduced mass of zirconia. Preparation of hierarchically macro-mesoporous catalyst by loading nanocrystallites on the framework of alumina bundles can provide an alternative system to design advanced nanocomposite catalyst with enhanced performance. A series of macro-mesoporous TiO2/Al2O3 nanocomposites with different morphologies were synthesised. The materials were calcined at 723 K and were characterised by X-ray diffraction (XRD), Scanning electron microscopy (SEM), Transmission electron microscope (TEM), N2 adsorption/desorption, Infrared Emission Spectroscopy (IES), and UV-visible spectroscopy (UV-visible). A modified approach was proposed for the synthesis of 1D (fibrous) nanocomposite with higher Ti/Al molar ratio (2:1) at lower temperature (<100oC), which makes it possible to synthesize such materials on industrial scale. The performances of a series of resultant TiO2/Al2O3 nanocomposites with different morphologies were evaluated as a photocatalyst for the phenol degradation under UV irradiation. The photocatalyst (Ti/Al =2) with fibrous morphology exhibits higher activity than that of the photocatalyst with microspherical morphology which indeed has the highest Ti to Al molar ratio (Ti/Al =3) in the series of as-synthesised hierarchical TiO2/Al2O3 nanocomposites. Furthermore, the photocatalytic performances, for the fibrous nanocomposites with Ti/Al=2, were optimized by calcination at elevated temperatures. The nanocomposite prepared by calcination at 750oC exhibits the highest catalytic activity, and its performance per TiO2 unit is very close to that of the gold standard, Degussa P 25. This work also emphasizes two advantages of the nanocomposites with fibrous morphology: (1) the resistance to sintering, and (2) good catalyst recovery.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The paper presents the results of a study conducted into the relationship between dwelling characteristics and occupant activities with the respiratory health of resident women and children in Lao People’s Democratic Republic (PDR). Lao is one of the least developed countries in south-east Asia with poor life expectancies and mortality rates. The study, commissioned by the World Health Organisation, included questionnaires delivered to residents of 356 dwellings in nine districts in Lao PDR over a five month period (December 2005-April 2006), with the aim of identifying the association between respiratory health and indoor air pollution, in particular exposures related to indoor biomass burning. Adjusted odds ratios were calculated for each health outcome separately using binary logistic regression. After adjusting for age, a wide range of symptoms of respiratory illness in women and children aged 1-4 years were positively associated with a range of indoor exposures related to indoor cooking, including exposure to a fire and location of the cooking place. Among women, “dust always inside the house” and smoking were also identified as strong risk factors for respiratory illness. Other strong risk factors for children, after adjusting for age and gender, included dust and drying clothes inside. This analysis confirms the role of indoor air pollution in the burden of disease among women and children in Lao PDR.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Contact lenses are a common method for the correction of refractive errors of the eye. While there have been significant advancements in contact lens designs and materials over the past few decades, the lenses still represent a foreign object in the ocular environment and may lead to physiological as well as mechanical effects on the eye. When contact lenses are placed in the eye, the ocular anatomical structures behind and in front of the lenses are directly affected. This thesis presents a series of experiments that investigate the mechanical and physiological effects of the short-term use of contact lenses on anterior and posterior corneal topography, corneal thickness, the eyelids, tarsal conjunctiva and tear film surface quality. The experimental paradigm used in these studies was a repeated measures, cross-over study design where subjects wore various types of contact lenses on different days and the lenses were varied in one or more key parameters (e.g. material or design). Both, old and newer lens materials were investigated, soft and rigid lenses were used, high and low oxygen permeability materials were tested, toric and spherical lens designs were examined, high and low powers and small and large diameter lenses were used in the studies. To establish the natural variability in the ocular measurements used in the studies, each experiment also contained at least one “baseline” day where an identical measurement protocol was followed, with no contact lenses worn. In this way, changes associated with contact lens wear were considered in relation to those changes that occurred naturally during the 8 hour period of the experiment. In the first study, the regional distribution and magnitude of change in corneal thickness and topography was investigated in the anterior and posterior cornea after short-term use of soft contact lenses in 12 young adults using the Pentacam. Four different types of contact lenses (Silicone hydrogel/ Spherical/–3D, Silicone Hydrogel/Spherical/–7D, Silicone Hydrogel/Toric/–3D and HEMA/Toric/–3D) of different materials, designs and powers were worn for 8 hours each, on 4 different days. The natural diurnal changes in corneal thickness and curvature were measured on two separate days before any contact lens wear. Significant diurnal changes in corneal thickness and curvature within the duration of the study were observed and these were taken into consideration for calculating the contact lens induced corneal changes. Corneal thickness changed significantly with lens wear and the greatest corneal swelling was seen with the hydrogel (HEMA) toric lens with a noticeable regional swelling of the cornea beneath the stabilization zones, the thickest regions of the lenses. The anterior corneal surface generally showed a slight flattening with lens wear. All contact lenses resulted in central posterior corneal steepening, which correlated with the relative degree of corneal swelling. The corneal swelling induced by the silicone hydrogel contact lenses was typically less than the natural diurnal thinning of the cornea over this same period (i.e. net thinning). This highlights why it is important to consider the natural diurnal variations in corneal thickness observed from morning to afternoon to accurately interpret contact lens induced corneal swelling. In the second experiment, the relative influence of lenses of different rigidity (polymethyl methacrylate – PMMA, rigid gas permeable – RGP and silicone hydrogel – SiHy) and diameters (9.5, 10.5 and 14.0) on corneal thickness, topography, refractive power and wavefront error were investigated. Four different types of contact lenses (PMMA/9.5, RGP/9.5, RGP/10.5, SiHy/14.0), were worn by 14 young healthy adults for a period of 8 hours on 4 different days. There was a clear association between fluorescein fitting pattern characteristics (i.e. regions of minimum clearance in the fluorescein pattern) and the resulting corneal shape changes. PMMA lenses resulted in significant corneal swelling (more in the centre than periphery) along with anterior corneal steepening and posterior flattening. RGP lenses, on the other hand, caused less corneal swelling (more in the periphery than centre) along with opposite effects on corneal curvature, anterior corneal flattening and posterior steepening. RGP lenses also resulted in a clinically and statistically significant decrease in corneal refractive power (ranging from 0.99 to 0.01 D), large enough to affect vision and require adjustment in the lens power. Wavefront analysis also showed a significant increase in higher order aberrations after PMMA lens wear, which may partly explain previous reports of "spectacle blur" following PMMA lens wear. We further explored corneal curvature, thickness and refractive changes with back surface toric and spherical RGP lenses in a group of 6 subjects with toric corneas. The lenses were worn for 8 hours and measurements were taken before and after lens wear, as in previous experiments. Both lens types caused anterior corneal flattening and a decrease in corneal refractive power but the changes were greater with the spherical lens. The spherical lens also caused a significant decrease in WTR astigmatism (WRT astigmatism defined as major axis within 30 degrees of horizontal). Both the lenses caused slight posterior corneal steepening and corneal swelling, with a greater effect in the periphery compared to the central cornea. Eyelid position, lid-wiper and tarsal conjunctival staining were also measured in Experiment 2 after short-term use of the rigid and SiHy contact lenses. Digital photos of the external eyes were captured for lid position analysis. The lid-wiper region of the marginal conjunctiva was stained using fluorescein and lissamine green dyes and digital photos were graded by an independent masked observer. A grading scale was developed in order to describe the tarsal conjunctival staining. A significant decrease in the palpebral aperture height (blepharoptosis) was found after wearing of PMMA/9.5 and RGP/10.5 lenses. All three rigid contact lenses caused a significant increase in lid-wiper and tarsal staining after 8 hours of lens wear. There was also a significant diurnal increase in tarsal staining, even without contact lens wear. These findings highlight the need for better contact lens edge design to minimise the interactions between the lid and contact lens edge during blinking and more lubricious contact lens surfaces to reduce ocular surface micro-trauma due to friction and for. Tear film surface quality (TFSQ) was measured using a high-speed videokeratoscopy technique in Experiment 2. TFSQ was worse with all the lenses compared to baseline (PMMA/9.5, RGP/9.5, RGP/10.5, and SiHy/14) in the afternoon (after 8 hours) during normal and suppressed blinking conditions. The reduction in TFSQ was similar with all the contact lenses used, irrespective of their material and diameter. An unusual pattern of change in TFSQ in suppressed blinking conditions was also found. The TFSQ with contact lens was found to decrease until a certain time after which it improved to a value even better than the bare eye. This is likely to be due to the tear film drying completely over the surface of the contact lenses. The findings of this study also show that there is still a scope for improvement in contact lens materials in terms of better wettability and hydrophilicity in order to improve TFSQ and patient comfort. These experiments showed that a variety of changes can occur in the anterior eye as a result of the short-term use of a range of commonly used contact lens types. The greatest corneal changes occurred with lenses manufactured from older HEMA and PMMA lens materials, whereas modern SiHy and rigid gas permeable materials caused more subtle changes in corneal shape and thickness. All lenses caused signs of micro-trauma to the eyelid wiper and palpebral conjunctiva, although rigid lenses appeared to cause more significant changes. Tear film surface quality was also significantly reduced with all types of contact lenses. These short-term changes in the anterior eye are potential markers for further long term changes and the relative differences between lens types that we have identified provide an indication of areas of contact lens design and manufacture that warrant further development.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Characterization of mass transfer properties was achieved in the longitudinal, radial, and tangential directions for four Australian hardwood species: spotted gum, blackbutt, jarrah, and messmate. Measurement of mass transfer properties for these species was necessary to complement current vacuum drying modeling research. Water-vapour diffusivity was determined in steady state using a specific vapometer. Permeability was determined using a specialized device developed to measure over a wide range of permeability values. Permeability values of some species and material directions were extremely low and undetectable by the mass flow meter device. Hence, a custom system based on volume evolution was conceived to determine very low, previously unpublished, wood permeability values. Mass diffusivity and permeability were lowest for spotted gum and highest for messmate. Except for messmate in the radial direction, the four species measured were less permeable in all directions than the lowest published figures, demonstrating the high impermeability of Australian hardwoods and partly accounting for their relatively slow drying rates. Permeability, water-vapour diffusivity, and associated anisotropic ratio data obtained for messmate were extreme or did not follow typical trends and is consequently the most difficult of the four woods to dry in terms of collapse and checking degradation. © The State of Queensland, Department of Agriculture, Fisheries and Forestry, 2012.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A pilot study has produced 31 groundwater samples from a coal seam gas (CSG) exploration well located in Maramarua, New Zealand. This paper describes sources of CSG water chemistry variations, and makes sampling and analytical recommendations to minimize these variations. The hydrochemical character of these samples is studied using factor analysis, geochemical modelling, and a sparging experiment. Factor analysis unveils carbon dioxide (CO2) degassing as the principal cause of sample variation (about 33%). Geochemical modelling corroborates these results and identifies minor precipitation of carbonate minerals with degassing. The sparging experiment confirms the effect of CO2 degassing by showing a steady rise in pH while maintaining constant alkalinity. Factor analysis correlates variations in the major ion composition (about 17%) to changes in the pumping regime and to aquifer chemistry variations due to cation exchange reactions with argillaceous minerals. An effective CSG water sampling program can be put into practice by measuring pH at the well head and alkalinity at the laboratory; these data can later be used to calculate the carbonate speciation at the time the sample was collected. In addition, TDS variations can be reduced considerably if a correct drying temperature of 180°C is consistently implemented.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Rates of dehydration/rehydration are important quality parameters for dried products. Theoretically, if there are no adverse effects on the integrity of the tissue structure, it should absorb water to the same moisture content of the initial product before drying.The purpose of this work is to semi-automate the process of detection of cell structure boundaries as a food is dehydrated and rehydrated. This will enable food materials researchers to quantify changes to material’s structure as these processes take place. Images of potato cells as they were dehydrated and rehydrated were taken using an electron microscope. Cell boundaries were detected using an image processing algorithm. Average cell area and perimeter at each stage of dehydration were calculated and plotted versus time. The results show that the algorithm can successfully identify cell boundaries.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sintered bars of YBa2Cu3O7-x obtained by slip-casting are investigated for drying and sintering behaviour. High J(cm) values (approximate to 10(6) A/cm(2) at 77K) are obtained, although J(ct) values are low (approximate to 10(2) A/cm(2) at 77K). Microstructural characterisation is undertaken on selected samples which demonstrate significant differences in physical density and critical current density.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A simple experimental apparatus is described in which a wide variety of vapor phase nucleation studies of refractory materials could be performed aboard NASA's KC-135 Research Aircraft. The chief advantage of a microgravity environment for these studies is the expected absence of thermally driven convective motions in the gas. The absence of convection leads to much more accurate knowledge of both the temperature distribution in the system and the time evolution of the refractory vapor concentration as a function of distance from the crucible.The evolution of the apparatus will be described as more experience is gained with the microgravity environment. Such experiments will be used to prepare for similar ones carried out aboard either the shuttle or Space Station where considerably longer duration experiments are possible.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Creep and shrinkage behaviour of an ultra lightweight cement composite (ULCC) up to 450 days was evaluated in comparison with those of a normal weight aggregate concrete (NWAC) and a lightweight aggregate concrete (LWAC) with similar 28-day compressive strength. The ULCC is characterized by low density < 1500 kg/m3 and high compressive strength about 60 MPa. Autogenous shrinkage increased rapidly in the ULCC at early-age and almost 95% occurred prior to the start of creep test at 28 days. Hence, majority of shrinkage of the ULCC during creep test was drying shrinkage. Total shrinkage of the ULCC during the 450-day creep test was the lowest compared to the NWAC and LWAC. However, corresponding total creep in the ULCC was the highest with high proportion attributed to basic creep (≥ ~90%) and limited drying creep. The high creep of the ULCC is likely due to its low E-modulus. Specific creep of the ULCC was similar to that of the NWAC, but more than 80% higher than the LWAC. Creep coefficient of the ULCC was about 47% lower than that of the NWAC but about 18% higher than that of the LWAC. Among five creep models evaluated which tend to over-estimate the creep coefficient of the ULCC, EC2 model gives acceptable prediction within +25% deviations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dehydration of food materials requires water removal from it. This removal of moisture prevents the growth and reproduction of microorganisms that cause decay and minimizes many of the moisture-driven deterioration reactions (Brennan, 1994). However, during food drying, many other changes occur simultaneously resulting in a modified overall quality (Kompany et al., 1993). Among the physical attributes of dried food material porosity and microstructure are the important ones that can dominant other quality of dried foods (Aguilera et al., 2000). In addition, this two concerned quality attributes affected by process conditions, material components and raw structure of food stuff. In this work, temperature moisture distribution within food materials during microwave drying will be taken into consideration to observe its participation on the microstructure and porosity of the finished product. Apple is the selective materials for this work. Generally, most of the food materials are found in non-uniformed moisture contained condition. To develop non uniform temperature distribution, food materials have been dried in a microwave oven with different power levels (Chua et al., 2000). First of all, temperature and moisture model is simulated by COMSOL Multiphysics. Later on, digital imaging camera and Image Pro Premier software have been deployed to observation moisture distribution and thermal imaging camera for temperature distribution. Finally, Microstructure and porosity of the food materials are obtained from scanning electron microscope and porosity measuring devices respectively . Moisture distribution and temperature during drying influence the microstructure and porosity significantly. Specially, High temperature and moisture contained regions show less porosity and more rupture. These findings support other literatures of Halder et al. (2011) and Rahman et al (1990). On the other hand, low temperature and moisture regions depict uniform microstructure and high porosity. This work therefore assists in better understanding of the role of moisture and temperature distribution to a prediction of micro structure and porosity of dried food materials.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this study, a hierarchical nano/microfibrous chitosan/collagen scaffold that approximates structural and functional attributes of native extracellular matrix (ECM), has been developed for applicability in skin tissue engineering. Scaffolds were produced by electrospinning of chitosan followed by imbibing of collagen solution, freeze-drying and subsequent cross-linking of two polymers. Scanning electron microscopy showed formation of layered scaffolds with nano/microfibrous architechture. Physico-chemical properties of scaffolds including tensile strength, swelling behavior and biodegradability were found satisfactory for intended application. 3T3 fibroblasts and HaCaT keratinocytes showed good in vitro cellular response on scaffolds thereby indicating the matrices′ cytocompatible nature. Scaffolds tested in an ex vivo human skin equivalent (HSE) wound model, as a preliminary alternative to animal testing, showed keratinocyte migration and wound re-epithelization — a pre-requisite for healing and regeneration. Taken together, the herein proposed chitosan/collagen scaffold, shows good potential for skin tissue engineering.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose: One of the challenges associated with cell-based therapies for repairing the retina is the development of suitable materials on which to grow and transplant retinal cells. Using the ARPE-19 cell line, we have previously demonstrated the feasibility of growing RPE-derived cells on membranes prepared from the silk protein fibroin. The present study was aimed at developing a porous, ultra-thin fibroin membrane that might better support development of apical-basal polarity in culture, and to extend this work to primary cultures of human RPE cells. Methods: Ultra-thin fibroin membranes were prepared using a highly polished casting table coated with Topas® (a cyclic olefin copolymer) and a 1:0.03 aqueous solution of fibroin and PEO (Mv 900 000 g/mol). Following drying, the membranes were water annealed to make them water-stable, washed in water to remove PEO, sterilised by treatment with 95% ethanol, and washed extensively in saline. Primary cultures containing human RPE cells were established from donor posterior eye cups and maintained in DMEM/F12 medium supplemented with 10% fetal bovine serum and antibiotics. First passage cultures were seeded onto fibroin membranes pre-coated with vitronectin and grown for 6 weeks in medium supplemented with 1% serum. Comparative cultures were established on porous 1.0 µm pore PET membrane (Millipore) and using ARPE-19 cells. Results: The fibroin membranes displayed an average thickness of 3 µm and contained numerous dimples/pore-like structures of up to 3-5 µm in diameter. The primary cultures predominantly contained pigmented epithelial cells, but mesenchymal cells (presumed fibroblasts) were also often present. Passaged cultures appeared to attach equally well to either fibroin or PET membranes. Over time cells on either material adopted a more cobblestoned morphology. Conclusions: Progress has been made towards developing a porous ultra-thin fibroin membrane that supports cultivation of RPE cells. Further studies are required to determine the degree of membrane permeability and RPE polarity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

During food drying, many other changes occur simultaneously, resulting in an improved overall quality. Among the quality attributes, the structure and its corresponding color influence directly or indirectly other properties of food. In addition, these quality attributes are affected by process conditions, material components and the raw structure of the foodstuff. In this work, the temperature distribution within food materials during microwave drying has been taken into consideration to observe its role in color modification. In order to determine the temperature distribution of microwave-dried food (apple), a thermal imaging camera has been used. The image acquired from the digital camera has been analysed using image J software in order to get the color change of fresh and dried apple. The results show that temperature distribution plays an important role in determining the quality of the food. The thermal imaging camera was deployed to observe the temperature distribution within food materials during drying. It is clearly observed from the higher value of (ERGB =102) and the uneven color change that uneven temperature distribution can influence customer perceptions of the quality of dried food. Simulation of a mathematical model of temperature distribution during microwave drying can make it possible to predict the colour and texture of the microwaved food.