418 resultados para Precise Positioning
Resumo:
Computer vision is much more than a technique to sense and recover environmental information from an UAV. It should play a main role regarding UAVs’ functionality because of the big amount of information that can be extracted, its possible uses and applications, and its natural connection to human driven tasks, taking into account that vision is our main interface to world understanding. Our current research’s focus lays on the development of techniques that allow UAVs to maneuver in spaces using visual information as their main input source. This task involves the creation of techniques that allow an UAV to maneuver towards features of interest whenever a GPS signal is not reliable or sufficient, e.g. when signal dropouts occur (which usually happens in urban areas, when flying through terrestrial urban canyons or when operating on remote planetary bodies), or when tracking or inspecting visual targets—including moving ones—without knowing their exact UMT coordinates. This paper also investigates visual serving control techniques that use velocity and position of suitable image features to compute the references for flight control. This paper aims to give a global view of the main aspects related to the research field of computer vision for UAVs, clustered in four main active research lines: visual serving and control, stereo-based visual navigation, image processing algorithms for detection and tracking, and visual SLAM. Finally, the results of applying these techniques in several applications are presented and discussed: this study will encompass power line inspection, mobile target tracking, stereo distance estimation, mapping and positioning.
Resumo:
Integrity of Real Time Kinematic (RTK) positioning solutions relates to the confidential level that can be placed in the information provided by the RTK system. It includes the ability of the RTK system to provide timely valid warnings to users when the system must not be used for the intended operation. For instance, in the controlled traffic farming (CTF) system that controls traffic separates wheel beds and root beds, RTK positioning error causes overlap and increases the amount of soil compaction. The RTK system’s integrity capacity can inform users when the actual positional errors of the RTK solutions have exceeded Horizontal Protection Levels (HPL) within a certain Time-To-Alert (TTA) at a given Integrity Risk (IR). The later is defined as the probability that the system claims its normal operational status while actually being in an abnormal status, e.g., the ambiguities being incorrectly fixed and positional errors having exceeded the HPL. The paper studies the required positioning performance (RPP) of GPS positioning system for PA applications such as a CTF system, according to literature review and survey conducted among a number of farming companies. The HPL and IR are derived from these RPP parameters. A RTK-specific rover autonomous integrity monitoring (RAIM) algorithm is developed to determine the system integrity according to real time outputs, such as residual square sum (RSS), HDOP values. A two-station baseline data set is analyzed to demonstrate the concept of RTK integrity and assess the RTK solution continuity, missed detection probability and false alarm probability.
Resumo:
The following paper presents an evaluation of airborne sensors for use in vegetation management in powerline corridors. Three integral stages in the management process are addressed including, the detection of trees, relative positioning with respect to the nearest powerline and vegetation height estimation. Image data, including multi-spectral and high resolution, are analyzed along with LiDAR data captured from fixed wing aircraft. Ground truth data is then used to establish the accuracy and reliability of each sensor thus providing a quantitative comparison of sensor options. Tree detection was achieved through crown delineation using a Pulse-Coupled Neural Network (PCNN) and morphologic reconstruction applied to multi-spectral imagery. Through testing it was shown to achieve a detection rate of 96%, while the accuracy in segmenting groups of trees and single trees correctly was shown to be 75%. Relative positioning using LiDAR achieved a RMSE of 1.4m and 2.1m for cross track distance and along track position respectively, while Direct Georeferencing achieved RMSE of 3.1m in both instances. The estimation of pole and tree heights measured with LiDAR had a RMSE of 0.4m and 0.9m respectively, while Stereo Matching achieved 1.5m and 2.9m. Overall a small number of poles were missed with detection rates of 98% and 95% for LiDAR and Stereo Matching.
Resumo:
Purpose: To investigate speed regulation during overground running on undulating terrain. Methods: Following an initial laboratory session to calculate physiological thresholds, eight experienced runners completed a spontaneously paced time trial over 3 laps of an outdoor course involving uphill, downhill and level sections. A portable gas analyser, GPS receiver and activity monitor were used to collect physiological, speed and stride frequency data. Results: Participants ran 23% slower on uphills and 13.8% faster on downhills compared with level sections. Speeds on level sections were significantly different for 78.4 ± 7.0 seconds following an uphill and 23.6 ± 2.2 seconds following a downhill. Speed changes were primarily regulated by stride length which was 20.5% shorter uphill and 16.2% longer downhill, while stride frequency was relatively stable. Oxygen consumption averaged 100.4% of runner’s individual ventilatory thresholds on uphills, 78.9% on downhills and 89.3% on level sections. 89% of group level speed was predicted using a modified gradient factor. Individuals adopted distinct pacing strategies, both across laps and as a function of gradient. Conclusions: Speed was best predicted using a weighted factor to account for prior and current gradients. Oxygen consumption (VO2) limited runner’s speeds only on uphill sections, and was maintained in line with individual ventilatory thresholds. Running speed showed larger individual variation on downhill sections, while speed on the level was systematically influenced by the preceding gradient. Runners who varied their pace more as a function of gradient showed a more consistent level of oxygen consumption. These results suggest that optimising time on the level sections after hills offers the greatest potential to minimise overall time when running over undulating terrain.
Resumo:
Purpose: To compare the eye and head movements and lane-keeping of drivers with hemianopia and quadrantanopia with that of age-matched controls when driving under real world conditions. Methods: Participants included 22 hemianopes and 8 quadrantanopes (M age 53 yrs) and 30 persons with normal visual fields (M age 52 yrs) who were ≥ 6 months from the brain injury date and either a current driver or aiming to resume driving. All participants drove an instrumented dual-brake vehicle along a 14-mile route in traffic that included non-interstate city driving and interstate driving. Driving performance was scored using a standardised assessment system by two “backseat” raters and the Vigil Vanguard system which provides objective measures of speed, braking and acceleration, cornering, and video-based footage from which eye and head movements and lane-keeping can be derived. Results: As compared to drivers with normal visual fields, drivers with hemianopia or quadrantanopia on average were significantly more likely to drive slower, to exhibit less excessive cornering forces or acceleration, and to execute more shoulder movements off the seat. Those hemianopic and quadrantanopic drivers rated as safe to drive by the backseat evaluator made significantly more excursive eye movements, exhibited more stable lane positioning, less sudden braking events and drove at higher speeds than those rated as unsafe, while there was no difference between safe and unsafe drivers in head movements. Conclusions: Persons with hemianopic and quadrantanopic field defects rated as safe to drive have different driving characteristics compared to those rated as unsafe when assessed using objective measures of driving performance.
Resumo:
This paper firstly presents an extended ambiguity resolution model that deals with an ill-posed problem and constraints among the estimated parameters. In the extended model, the regularization criterion is used instead of the traditional least squares in order to estimate the float ambiguities better. The existing models can be derived from the general model. Secondly, the paper examines the existing ambiguity searching methods from four aspects: exclusion of nuisance integer candidates based on the available integer constraints; integer rounding; integer bootstrapping and integer least squares estimations. Finally, this paper systematically addresses the similarities and differences between the generalized TCAR and decorrelation methods from both theoretical and practical aspects.
Resumo:
In this paper, the problems of three carrier phase ambiguity resolution (TCAR) and position estimation (PE) are generalized as real time GNSS data processing problems for a continuously observing network on large scale. In order to describe these problems, a general linear equation system is presented to uniform various geometry-free, geometry-based and geometry-constrained TCAR models, along with state transition questions between observation times. With this general formulation, generalized TCAR solutions are given to cover different real time GNSS data processing scenarios, and various simplified integer solutions, such as geometry-free rounding and geometry-based LAMBDA solutions with single and multiple-epoch measurements. In fact, various ambiguity resolution (AR) solutions differ in the floating ambiguity estimation and integer ambiguity search processes, but their theoretical equivalence remains under the same observational systems models and statistical assumptions. TCAR performance benefits as outlined from the data analyses in some recent literatures are reviewed, showing profound implications for the future GNSS development from both technology and application perspectives.
Resumo:
Considerable attention has been devoted to the duty or doctrine of utmost good faith in the academic literature and in the courts. This attention ranges from an analysis of the precise legal basis for the duty through a consideration of the continuing nature of that duty in the post-contract environment.It is quite clear that all contracts of insurance are subject to this duty of utmost good faith. What is less clear and certain are the incidents attendant upon such a duty and the scope of the obligations that such a duty imposes. This article examines the relative positions that have been reached in England and Australia and concludes with some recommendations for legislative reform to this area of the law.
Resumo:
Windscape is a graphic work produced from information gathered in the field by the author. A number of measurement methods were employed including: Real Tine Kinematic Global Positioning System survey (RTKGPS), still photography, plant distribution studies and handheld GPS survey. This creative work is one outcome of the author’s research into a design methodology wherein the designer conducts their own measurements and then produces their own maps of sites. Windscape is a test of the hypothesis that such maps have greater relevance to the design process due to the manner in which they are created (site based research) and the information they depict, namely the relationships between landscape processes and structures.
Resumo:
Although the branding literature commenced during the 1940s, the first publications related to destination branding did not emerge until half a century later. A review of 74 destination branding publications by 102 authors from the first 10 years of destination branding literature (1998-2007) found at least nine potential research gaps warranting attention by researchers. In particular, there has been a lack of research examining the extent to which brand positioning campaigns have been successful in enhancing brand equity in the manner intended in the brand identity. The purpose of this paper is to report the results of an investigation of brand equity tracking for a competitive set of destinations in Queensland, Australia between 2003 and 2007. A hierarchy of consumer-based brand equity (CBBE) provided an effective means to monitor destination brand positions over time. A key implication of the results was the finding that there was no change in brand positions for any of the five destinations over the four year period. This leads to the proposition that destination position change within a competitive set will only occur slowly over a long period of time. The tabulation of 74 destination branding case studies, research papers, conceptual papers and web content analyses provides students and researchers with a useful resource on the current state of the field.
Resumo:
Camera Botanica 1 - testing a design process (unrealised buildings). ---------- Sited in a highly biodiverse and bushfire prone heathlands on the South-east coast of Western Australia, Camera Botanica 1 is a test of a new design methodology for achieving ecologically sustainable architecture in biodiverse, bushfire prone landscapes. ---------- The design methods were intensively site-based with the author-designer conducting his own site surveys using high-end professional grade surveying equipment such as: Real Time Kinematic GPS (landform survey); Terrestrial laser scanning (vegetation survey); laser levelling and Total Station surveys (erection of scaffolds and contour lines). ---------- This was the first time, internationally, that terrestrial laser scanning was used to measure vegetation. These precise surveys enabled the construction of highly detailed models and drawings - a facility that has not been available prior to this technology. ---------- Designed for a real client and a real site - Camera Botanica 1 is a hypothetical design outcome which demonstrates the efficacy of a new design methodology and thus expands on knowledge of the applicability of new surveying technologies to the design of ecologically sustainable architecture in biodiverse landscapes.
Resumo:
Camera Botanica 2 - testing a design process (unrealised building). Sited in a highly biodiverse and bushfire prone heathlands on the South-east coast of Western Australia, Camera Botanica 2 is a test of a new design methodology for achieving ecologically sustainable architecture in biodiverse, bushfire prone landscapes. ---------- The design method was intensively site-based with the author-designer conducting his own site surveys using high-end professional grade surveying equipment such as: Real Time Kinematic GPS (landform survey); Terrestrial laser scanning (vegetation survey); laser levelling and Total Station surveys (erection of scaffolds and contour lines). ---------- This was the first time, internationally, that terrestrial laser scanning was used to measure vegetation. These precise surveys enabled the construction of highly detailed models and drawings - a facility that has not been available prior to this technology. ---------- Designed for a real client and a real site - Camera Botanica 2 is a hypothetical design outcome which demonstrates the efficacy of a new design methodology and thus expands on knowledge of the applicability of new surveying technologies to the design of ecologically sustainable architecture in biodiverse landscapes.
Resumo:
The Silk Road Project was a practice-based research project investigating the potential of motion capture technology to inform perceptions of embodiment in dance performance. The project created a multi-disciplinary collaborative performance event using dance performance and real-time motion capture at Deakin University’s Deakin Motion Lab. Several new technological advances in producing real-time motion capture performance were produced, along with a performance event that examined the aesthetic interplay between a dancer’s movement and the precise mappings of its trajectories created by motion capture and real-time motion graphic visualisations.
Resumo:
In this paper we examine the dynamics of the link between inequality and inflation from a political economy perspective. We consider a simple dynamic general equilibrium model in which agents vote over the desired inflation rate in each period, and inequality is persistent. Inflation in our model is a mechanism of redistribution, and we find that the link between inequality and inflation within any period or over time depends on institutional and preference related parameters. Furthermore, we find that differences in the initial distributions of wealth can yield a diverse set of patterns for the evolution of the inflation and inequality link. Relative to existing literature, our model leads to more precise predictions about the inflation-inequality correlation. To that end, results in the extant empirical literature on the inflation and inequality link need to be interpreted with caution.
Resumo:
Study Design: Biomechanical testing of vertebral body screw pullout resistance with relevance to top screw pullout in endoscopic anterior scoliosis constructs. Objectives: To analyse the effect of screw positioning and angulation on pullout resistance of vertebral body screws, where the pullout takes place along a curved path as occurs in anterior scoliosis constructs. Summary of Background Data: Top screw pullout is a significant clinical problem in endoscopic anterior scoliosis surgery, with rates of up to 18% reported in the literature. Methods: A custom designed biomechanical test rig was used to perform pullout tests of Medtronic anterior vertebral screws where the pullout occurred along an arc of known radius. Using synthetic bone blocks, a range of pullout radii and screw angulations were tested, in order to determine an ‘optimal’ configuration. The optimal configuration was then compared with standard screw positioning using a series of tests on ovine vertebrae (n=29). Results: Screw angulation has a small but significant effect on pullout resistance, with maximum strength being achieved at 10 degree cephalad angulation. Combining 10 degree cephalad angulation with maximal spacing between the top two screws (maximum pullout radius) increased the pullout resistance by 88% compared to ‘standard’ screw positioning (screws inserted perpendicular to rod at mid-body height). Conclusions: The positioning of the top screw in anterior scoliosis constructs can significantly alter its pullout resistance.