543 resultados para Potential materials


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ticagrelor is an orally active ADP P2Y12 receptor antagonist in development by AstraZeneca plc for the reduction of recurrent ischemic events in patients with acute coronary syndromes (ACS). Prior to the development of ticagrelor, thienopyridine compounds, such as clopidogrel, were the focus of research into therapies for ACS. Although the thienopyridines are effective platelet aggregation inhibitors, they are prodrugs and, consequently, exert a slow onset of action. In addition, the variability in inter-individual metabolism of thienopyridine prodrugs has been associated with reduced efficacy in some patients. Ticagrelor is not a prodrug and exhibits a more rapid onset of action than the thienopyridine prodrugs. In clinical trials conducted to date, ticagrelor was a potent inhibitor of ADP-induced platelet aggregation and demonstrated effects that were comparable to clopidogrel. In a phase II, short-term trial, the bleeding profile of participants treated with ticagrelor was similar to that obtained with clopidogrel; however, an increased incidence of dyspnea was observed - an effect that has not been reported with the thienopyridines. Considering the occurrence of dyspnea, and the apparent non-superiority of ticagrelor to clopidogrel, it is difficult to justify a clear benefit to the continued development of ticagrelor. Outcomes from an ongoing phase III trial comparing ticagrelor with clopidogrel in 18,000 patients with ACS are likely to impact on the future development of ticagrelor.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: The purpose of this paper is to report the resistance of plasma-sprayed titanium dioxide (TiO2) nanostructured coatings in a corrosive environment.----- Design/methodology/approach: Weight loss studies are performed according to ASTM G31 specifications in 3.5?wt% NaCl. Electrochemical polarization resistance measurements are made according to ASTM G59-91 specifications. Corrosion resistance in a humid and corrosive environment is determined by exposing the samples in a salt spray chamber for 100?h. Microstructural studies are carried out using an atomic force microscope and scanning electron microscope.----- Findings: The nanostructured TiO2 coatings offer good resistance to corrosion, as shown by the results of immersion, electrochemical and salt spray studies. The corrosion resistance of the coating is dictated primarily by the geometry of splat lamellae, density of unmelted nanoparticles, magnitude of porosity and surface homogeneity.----- Practical implications: The TiO2 nanostructured coatings show promising potential for use as abrasion, wear-resistant and thermal barrier coatings for service in harsh environments.----- Originality/value: The paper relates the corrosion resistance of nanostructured TiO2 coatings to their structure and surface morphology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A deconvolution method that combines nanoindentation and finite element analysis was developed to determine elastic modulus of thin coating layer in a coating-substrate bilayer system. In this method, the nanoindentation experiments were conducted to obtain the modulus of both the bilayer system and the substrate. The finite element analysis was then applied to deconvolve the elastic modulus of the coating. The results demonstrated that the elastic modulus obtained using the developed method was in good agreement with that reported in literature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This edition has been substantially revised to increase overall clarity and to ensure a balanced examination of the criminal law in the 'Code' states, Queensland and Western Australia. The work has been brought up-to-date in all areas and provides valuable comment on the recent wide-reaching reforms to the law of homicide in Western Australia. Significant developments in both states discussed in this edition include: The abolition of wilful murder and infanticide, and the new definition of murder (WA); The introduction of the new offence of unlawful assault causing death (WA); The abolition of provocation to murder (WA), and whether this excuse still has a part to play (Qld); The reformulation of the excuse of self-defence, and the introduction of excessive self-defence (WA); The creation of offences for drink spiking (Qld and WA); and Current and proposed sentencing considerations (Qld and WA). Fundamental principles of the criminal law are illustrated throughout the book by selected extracts from the Codes and case law, while additional materials foster critical reflection on the law and the need for reform.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background. We investigated the likely impact of vaccines on the prevalence of and morbidity due to Chlamydia trachomatis (chlamydia) infections in heterosexual populations. Methods.An individual‐based mathematical model of chlamydia transmission was developed and linked to the infection course in chlamydia‐infected individuals. The model describes the impact of a vaccine through its effect on the chlamydial load required to infect susceptible individuals (the “critical load”), the load in infected individuals, and their subsequent infectiousness. The model was calibrated using behavioral, biological, and clinical data. Results.A fully protective chlamydia vaccine administered before sexual debut can theoretically eliminate chlamydia epidemics within 20 years. Partially effective vaccines can still greatly reduce the incidence of chlamydia infection. Vaccines should aim primarily to increase the critical load in susceptible individuals and secondarily to decrease the peak load and/or the duration of infection in vaccinated individuals who become infected. Vaccinating both sexes has a beneficial impact on chlamydia‐related morbidity, but targeting women is more effective than targeting men. Conclusions.Our findings can be used in laboratory settings to evaluate vaccine candidates in animal models, by regulatory bodies in the promotion of candidates for clinical trials, and by public health authorities in deciding on optimal intervention strategies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tungsten trioxide is one of the potential semiconducting materials used for sensing NH3, CO, CH4 and acetaldehyde gases. The current research aims at development, microstructural characterization and gas sensing properties of thin films of Tungsten trioxide (WO3). In this paper, we intend to present the microstructural characterization of these films as a function of post annealing heat treatment. Microstructural and elemental analysis of electron beam evaporated WO3 thin films and iron doped WO3 films (WO3:Fe) have been carried out using analytical techniques such as Transmission electron microscopy, Rutherford Backscattered Spectroscopy and XPS analysis. TEM analysis revealed that annealing at 300oC for 1 hour improves cyrstallinity of WO3 film. Both WO3 and WO3:Fe films had uniform thickness and the values corresponded to those measured during deposition. RBS results show a fairly high concentration of oxygen at the film surface as well as in the bulk for both films, which might be due to adsorption of oxygen from atmosphere or lattice oxygen vacancy inherent in WO3 structure. XPS results indicate that tungsten exists in 4d electronic state on the surface but at a depth of 10 nm, both 4d and 4f electronic states were observed. Atomic force microscopy reveals nanosize particles and porous structure of the film. This study shows e-beam evaporation technique produces nanoaparticles and porous WO3 films suitable for gas sensing applications and doping with iron decreases the porosity and particle size which can help improve the gas selectivity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The biomechanical or biophysical principles can be applied to study biological structures in their modern or fossil form. Bone is an important tissue in paleontological studies as it is a commonly preserved element in most fossil vertebrates, and can often allow its microstructures such as lacuna and canaliculi to be studied in detail. In this context, the principles of Fluid Mechanics and Scaling Laws have been previously applied to enhance the understanding of bone microarchitecture and their implications for the evolution of hydraulic structures to transport fluid. It has been shown that the microstructure of bone has evolved to maintain efficient transport between the nutrient supply and cells, the living components of the tissue. Application of the principle of minimal expenditure of energy to this analysis shows that the path distance comprising five or six lamellar regions represents an effective limit for fluid and solute transport between the nutrient supply and cells; beyond this threshold, hydraulic resistance in the network increases and additional energy expenditure is necessary for further transportation. This suggests an optimization of the size of bone’s building blocks (such as osteon or trabecular thickness) to meet the metabolic demand concomitant to minimal expenditure of energy. This biomechanical aspect of bone microstructure is corroborated from the ratio of osteon to Haversian canal diameters and scaling constants of several mammals considered in this study. This aspect of vertebrate bone microstructure and physiology may provide a basis of understanding of the form and function relationship in both extinct and extant taxa.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Improved public awareness and strong sentiments towards environmental issues will continue to create increasing demand for sustainable housing (SH) in the coming years. Despite this potential, the up-take rate of sustainable housing in new build and through home renovation is not as high as expected within the housing industry. This is in contrast to the influx of emerging building technologies, new materials and innovative designs seen in exemplar homes built worldwide. How we should use the increasing awareness of SH and emerging technologies as an impetus to change the un-sustainable designs and practices of the building industry is high on the agenda of the government and majority of the stakeholders involved. This warrants the study of multifaceted strategies that meet the needs of multiple stakeholders and integrated seamlessly into housing development processes. Specifically, the different perceptions, roles and incentives of stakeholders, who inevitably need to ensure their benefits and commercial returns, should be highlighted and acted upon. ----- This paper discusses the preliminary findings of a research project that aims to promote SH implementation by identifying and materializing the mutual benefits among key stakeholders. The aim is to be achieved through questionnaire surveys, structural equation modelling, interviews and case studies with seven major stakeholders within the Australian housing industry. This research identifies the influence and relationship of relevant factors, investigates preferences, similarities and differences between stakeholders on perceived benefits and in turn explores the mutual-benefit strategy package that facilitates decision making towards sustainable housing development.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Porous mesopore-bioglass (MBG) scaffolds have been proposed as a new class of bone regeneration materials due to their apatite-formation and drug-delivery properties; however, the material’s inherent brittleness and high degradation and surface instability are major disadvantages, which compromise its mechanical strength and cytocompatibility as a biological scaffold. Silk, on the other hand, is a native biomaterial and is well characterized with respect to biocompatibility and tensile strength. In this study we set out to investigate what effects blending silk with MBG had on the physiochemical, drug-delivery and biological properties of MBG scaffolds with a view to bone tissue engineering applications. Transmission electron microscopy (TEM), scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR) were the methods used to analyze the inner microstructure, pore size and morphology, and composition of MBG scaffolds, before and after addition of silk. The effect of silk modification on the mechanical property of MBG scaffolds was determined by testing the compressive strength of the scaffolds and also compressive strength after degradation over time. The drug-delivery potential was evaluated by the release of dexamethasone (DEX) from the scaffolds. Finally, the cytocompatibility of silk-modified scaffolds was investigated by the attachment, morphology, proliferation, differentiation and bone-relative gene expression of bone marrow stromal cells (BMSCs). The results showed that silk modification improved the uniformity and continuity of pore network of MBG scaffolds, and maintained high porosity (94%) and large-pore size (200–400 mm). There was a significant improvement in mechanical strength, mechanical stability, and control of burst release of DEX in silkmodified MBG scaffolds. Silk modification also appeared to provide a better environment for BMSC attachment, spreading, proliferation, and osteogenic differentiation on MBG scaffolds.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Transition metal oxides are functional materials that have advanced applications in many areas, because of their diverse properties (optical, electrical, magnetic, etc.), hardness, thermal stability and chemical resistance. Novel applications of the nanostructures of these oxides are attracting significant interest as new synthesis methods are developed and new structures are reported. Hydrothermal synthesis is an effective process to prepare various delicate structures of metal oxides on the scales from a few to tens of nanometres, specifically, the highly dispersed intermediate structures which are hardly obtained through pyro-synthesis. In this thesis, a range of new metal oxide (stable and metastable titanate, niobate) nanostructures, namely nanotubes and nanofibres, were synthesised via a hydrothermal process. Further structure modifications were conducted and potential applications in catalysis, photocatalysis, adsorption and construction of ceramic membrane were studied. The morphology evolution during the hydrothermal reaction between Nb2O5 particles and concentrated NaOH was monitored. The study demonstrates that by optimising the reaction parameters (temperature, amount of reactants), one can obtain a variety of nanostructured solids, from intermediate phases niobate bars and fibres to the stable phase cubes. Trititanate (Na2Ti3O7) nanofibres and nanotubes were obtained by the hydrothermal reaction between TiO2 powders or a titanium compound (e.g. TiOSO4·xH2O) and concentrated NaOH solution by controlling the reaction temperature and NaOH concentration. The trititanate possesses a layered structure, and the Na ions that exist between the negative charged titanate layers are exchangeable with other metal ions or H+ ions. The ion-exchange has crucial influence on the phase transition of the exchanged products. The exchange of the sodium ions in the titanate with H+ ions yields protonated titanate (H-titanate) and subsequent phase transformation of the H-titanate enable various TiO2 structures with retained morphology. H-titanate, either nanofibres or tubes, can be converted to pure TiO2(B), pure anatase, mixed TiO2(B) and anatase phases by controlled calcination and by a two-step process of acid-treatment and subsequent calcination. While the controlled calcination of the sodium titanate yield new titanate structures (metastable titanate with formula Na1.5H0.5Ti3O7, with retained fibril morphology) that can be used for removal of radioactive ions and heavy metal ions from water. The structures and morphologies of the metal oxides were characterised by advanced techniques. Titania nanofibres of mixed anatase and TiO2(B) phases, pure anatase and pure TiO2(B) were obtained by calcining H-titanate nanofibres at different temperatures between 300 and 700 °C. The fibril morphology was retained after calcination, which is suitable for transmission electron microscopy (TEM) analysis. It has been found by TEM analysis that in mixed-phase structure the interfaces between anatase and TiO2(B) phases are not random contacts between the engaged crystals of the two phases, but form from the well matched lattice planes of the two phases. For instance, (101) planes in anatase and (101) planes of TiO2(B) are similar in d spaces (~0.18 nm), and they join together to form a stable interface. The interfaces between the two phases act as an one-way valve that permit the transfer of photogenerated charge from anatase to TiO2(B). This reduces the recombination of photogenerated electrons and holes in anatase, enhancing the activity for photocatalytic oxidation. Therefore, the mixed-phase nanofibres exhibited higher photocatalytic activity for degradation of sulforhodamine B (SRB) dye under ultraviolet (UV) light than the nanofibres of either pure phase alone, or the mechanical mixtures (which have no interfaces) of the two pure phase nanofibres with a similar phase composition. This verifies the theory that the difference between the conduction band edges of the two phases may result in charge transfer from one phase to the other, which results in effectively the photogenerated charge separation and thus facilitates the redox reaction involving these charges. Such an interface structure facilitates charge transfer crossing the interfaces. The knowledge acquired in this study is important not only for design of efficient TiO2 photocatalysts but also for understanding the photocatalysis process. Moreover, the fibril titania photocatalysts are of great advantage when they are separated from a liquid for reuse by filtration, sedimentation, or centrifugation, compared to nanoparticles of the same scale. The surface structure of TiO2 also plays a significant role in catalysis and photocatalysis. Four types of large surface area TiO2 nanotubes with different phase compositions (labelled as NTA, NTBA, NTMA and NTM) were synthesised from calcination and acid treatment of the H-titanate nanotubes. Using the in situ FTIR emission spectrescopy (IES), desorption and re-adsorption process of surface OH-groups on oxide surface can be trailed. In this work, the surface OH-group regeneration ability of the TiO2 nanotubes was investigated. The ability of the four samples distinctively different, having the order: NTA > NTBA > NTMA > NTM. The same order was observed for the catalytic when the samples served as photocatalysts for the decomposition of synthetic dye SRB under UV light, as the supports of gold (Au) catalysts (where gold particles were loaded by a colloid-based method) for photodecomposition of formaldehyde under visible light and for catalytic oxidation of CO at low temperatures. Therefore, the ability of TiO2 nanotubes to generate surface OH-groups is an indicator of the catalytic activity. The reason behind the correlation is that the oxygen vacancies at bridging O2- sites of TiO2 surface can generate surface OH-groups and these groups facilitate adsorption and activation of O2 molecules, which is the key step of the oxidation reactions. The structure of the oxygen vacancies at bridging O2- sites is proposed. Also a new mechanism for the photocatalytic formaldehyde decomposition with the Au-TiO2 catalysts is proposed: The visible light absorbed by the gold nanoparticles, due to surface plasmon resonance effect, induces transition of the 6sp electrons of gold to high energy levels. These energetic electrons can migrate to the conduction band of TiO2 and are seized by oxygen molecules. Meanwhile, the gold nanoparticles capture electrons from the formaldehyde molecules adsorbed on them because of gold’s high electronegativity. O2 adsorbed on the TiO2 supports surface are the major electron acceptor. The more O2 adsorbed, the higher the oxidation activity of the photocatalyst will exhibit. The last part of this thesis demonstrates two innovative applications of the titanate nanostructures. Firstly, trititanate and metastable titanate (Na1.5H0.5Ti3O7) nanofibres are used as intelligent absorbents for removal of radioactive cations and heavy metal ions, utilizing the properties of the ion exchange ability, deformable layered structure, and fibril morphology. Environmental contamination with radioactive ions and heavy metal ions can cause a serious threat to the health of a large part of the population. Treatment of the wastes is needed to produce a waste product suitable for long-term storage and disposal. The ion-exchange ability of layered titanate structure permitted adsorption of bivalence toxic cations (Sr2+, Ra2+, Pb2+) from aqueous solution. More importantly, the adsorption is irreversible, due to the deformation of the structure induced by the strong interaction between the adsorbed bivalent cations and negatively charged TiO6 octahedra, and results in permanent entrapment of the toxic bivalent cations in the fibres so that the toxic ions can be safely deposited. Compared to conventional clay and zeolite sorbents, the fibril absorbents are of great advantage as they can be readily dispersed into and separated from a liquid. Secondly, new generation membranes were constructed by using large titanate and small ã-alumina nanofibres as intermediate and top layers, respectively, on a porous alumina substrate via a spin-coating process. Compared to conventional ceramic membranes constructed by spherical particles, the ceramic membrane constructed by the fibres permits high flux because of the large porosity of their separation layers. The voids in the separation layer determine the selectivity and flux of a separation membrane. When the sizes of the voids are similar (which means a similar selectivity of the separation layer), the flux passing through the membrane increases with the volume of the voids which are filtration passages. For the ideal and simplest texture, a mesh constructed with the nanofibres 10 nm thick and having a uniform pore size of 60 nm, the porosity is greater than 73.5 %. In contrast, the porosity of the separation layer that possesses the same pore size but is constructed with metal oxide spherical particles, as in conventional ceramic membranes, is 36% or less. The membrane constructed by titanate nanofibres and a layer of randomly oriented alumina nanofibres was able to filter out 96.8% of latex spheres of 60 nm size, while maintaining a high flux rate between 600 and 900 Lm–2 h–1, more than 15 times higher than the conventional membrane reported in the most recent study.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a proposed qualitative framework to discuss the heterogeneous burning of metallic materials, through parameters and factors that influence the melting rate of the solid metallic fuel (either in a standard test or in service). During burning, the melting rate is related to the burning rate and is therefore an important parameter for describing and understanding the burning process, especially since the melting rate is commonly recorded during standard flammability testing for metallic materials and is incorporated into many relative flammability ranking schemes. However, whilst the factors that influence melting rate (such as oxygen pressure or specimen diameter) have been well characterized, there is a need for an improved understanding of how these parameters interact as part of the overall melting and burning of the system. Proposed here is the ‘Melting Rate Triangle’, which aims to provide this focus through a conceptual framework for understanding how the melting rate (of solid fuel) is determined and regulated during heterogeneous burning. In the paper, the proposed conceptual model is shown to be both (a) consistent with known trends and previously observed results, and (b)capable of being expanded to incorporate new data. Also shown are examples of how the Melting Rate Triangle can improve the interpretation of flammability test results. Slusser and Miller previously published an ‘Extended Fire Triangle’ as a useful conceptual model of ignition and the factors affecting ignition, providing industry with a framework for discussion. In this paper it is shown that a ‘Melting Rate Triangle’ provides a similar qualitative framework for burning, leading to an improved understanding of the factors affecting fire propagation and extinguishment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Adiabatic compression testing of components in gaseous oxygen is a test method that is utilized worldwide and is commonly required to qualify a component for ignition tolerance under its intended service. This testing is required by many industry standards organizations and government agencies; however, a thorough evaluation of the test parameters and test system influences on the thermal energy produced during the test has not yet been performed. This paper presents a background for adiabatic compression testing and discusses an approach to estimating potential differences in the thermal profiles produced by different test laboratories. A “Thermal Profile Test Fixture” (TPTF) is described that is capable of measuring and characterizing the thermal energy for a typical pressure shock by any test system. The test systems at Wendell Hull & Associates, Inc. (WHA) in the USA and at the BAM Federal Institute for Materials Research and Testing in Germany are compared in this manner and some of the data obtained is presented. The paper also introduces a new way of comparing the test method to idealized processes to perform system-by-system comparisons. Thus, the paper introduces an “Idealized Severity Index” (ISI) of the thermal energy to characterize a rapid pressure surge. From the TPTF data a “Test Severity Index” (TSI) can also be calculated so that the thermal energies developed by different test systems can be compared to each other and to the ISI for the equivalent isentropic process. Finally, a “Service Severity Index” (SSI) is introduced to characterizing the thermal energy of actual service conditions. This paper is the second in a series of publications planned on the subject of adiabatic compression testing.