205 resultados para Petroleum fuels.


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The feasibility of real-time calculation of parameters for an internal combustion engine via reconfigurable hardware implementation is investigated as an alternative to software computation. A detailed in-hardware field programmable gate array (FPGA)-based design is developed and evaluated using input crank angle and in-cylinder pressure data from fully instrumented diesel engines in the QUT Biofuel Engine Research Facility (BERF). Results indicate the feasibility of employing a hardware-based implementation for real-time processing for speeds comparable to the data sampling rate currently used in the facility, with acceptably low level of discrepancies between hardware and software-based calculation of key engine parameters.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An Environmental Scanning Electron Microscope (ESEM) has been used to investigate the freshwater sensitivity of secondary corrensite (regularly interstratified chlorite/smectite) and chlorite-rich chlorite/smectite in order to determine whether hydrocarbon reservoirs hosting these clays should be regarded as freshwater sensitive. ESEM experiments involved an examination and close comparison of selected clay areas in three samples at high magnification before, during and after prolonged freshwater treatments. Corrensite and chlorine/smectite in the samples did not visibly swell when immersed in fresh water. After soaking in fresh water for up to three months, these clays retained their original morphology and associated porosity. Hence, the presence of corrensite or chlorite/smectite in a hydrocarbon reservoir need not indicate that the reservoir is freshwater sensitive. © 1994.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The environmental scanning electron microscope (ESEM) has been used to image liquid hydrocarbons in sandstones and oil shales. Additionally, the fluid sensitivity of selected clay minerals in hydrocarbon reservoirs was assessed via three case studies: HCl acid sensitivity of authigenic chlorite in sandstone reservoirs, freshwater sensitivity of authigenic illite/smectite in sandstone reservoirs, and bleach sensitivity of a volcanic reservoir containing abundant secondary chlorite/corrensite. The results showed the suitability of using ESEM for imaging liquid hydrocarbon films in hydrocarbon reservoirs and the importance of simulating in situ fluid-rock interactions for hydrocarbon production programmes. In each case, results of the ESEM studies greatly enhanced prediction of reservoir/borehole reactions and, in some cases, contradicted conventional wisdom regarding the outcome of potential engineering solutions. (C) 1993 Wiley-Liss, Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Experiments were carried out on the sodium hypochlorite bleach sensitivity of a deep subsurface andesitic reservoir in order to predict possible deleterious mineral transformations during a downhole clean-up job. Experiments involved examination of core samples from the reservoir using an Environmental Scanning Electron Microscope (ESEM) with an attached Energy Dispersive Spectrometer (EDS) before and after the samples were immersed in bleach. Bleach immersion of whole-rock samples resulted in rapid (less than 1 min) precipitation of abundant 3.0-10.0-μm-wide calcite rhombs within clay-associated micropores and on clay and feldspar grain surfaces. Abundant microporefilling calcite rhombs also formed in pure separates of constituent chlorite/corrensite, whereas no calcite formed in a pure separate of constituent zeolite. These experiments indicate that corrensite is the likely calcium source in this experimental fluid-rock system. Formation of calcite occurs via a cation exchange reaction in which calcium in the smectitic interlayers of corrensite exchanges for sodium in the bleach. Serious formation damage due to calcite precipitation would have occurred in the andesite reservoir had it been exposed to bleach. This finding gives credence to earlier suggestions that cation exchange reactions have the potential to cause calcite precipitation in some sandstone reservoirs when exposed to drilling, completion or stimulation fluids. © 1993.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effect of HCl on authigenic chlorite in three different sandstones has been examined uisng an Environmental Scanning Electron Microscope (ESEM), together with conventional analytical techniques. The ESEM enabled chlorites to be directly observed in situ at high magnifications during HCl treatment, and was particularly effective in allowing the same chlorite areas to be closely compared before and after acid treatment. Chlorites were reacted with 1M to 10M HCl at temperatures up to 80°C and for periods up to five months. After all treatments, chlorites show extensive leaching of iron, magnesium and aluminum, and their crystalline structure is destroyed. However, despite these major compositional and structural changes, chlorites show little or no visible evidence of acid attack, with precise morphological detail of individual plates preserved in all samples following acid treatments. Chlorite dissolution, sensu stricto, did not occur as a result of acidization of the host sandstones. Acid-treated chlorides are likely to exits in a structurally weakened state that may make them susceptible to physical disintegration during fluid flow. Accordingly, fines migration may be a significant engineering problem associated with the acidization of chlorite-bearing sandstones. © 1993.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The water sensitivity of authigenic smectite- and illite-rich illite/smectites in sandstone reservoirs has been investigated using an Environmental Scanning Electron Microscope (ESEM). The ESEM enabled the illite/smectites to be directly observed in situ at high magnification during freshwater immersion, and was also particularly effective in allowing the same selected illite/smectite areas to be closely compared before and after freshwater treatments. The tendency of authigenic smectite-rich illite/smectite to swell on contact with fresh water varies greatly. Smectite-rich illite/smectite may osmotically swell to many times its original volume to form a gel which greatly reduces porosity and permeability, or may undergo only a subtle morphological change which has little or no adverse effect on reservoir quality. Authigenic illite-rich illite/smectite in sandstones does not swell when immersed in fresh water. Even after prolonged soaking in fresh water, illite-rich illite/smectite particles retain their original morphology. Accordingly, illite-rich illite/smectite in sandstones is unlikely to cause formation damage if exposed to freshwater-based fluids. © 1993.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Samples from the Callide Coal Measures, Queensland, Australia, containing the minor maceral, micrinite, have been studied using optical and electron-optical techniques to determine the precise compositional and structural nature of micrinite when in association with vitrinite macerals. Emphasis has been placed on direct spatial correlation of optical and electron-optical data due to the fine grain size (<1μm) of micrinite and its relatively low abundance compared with other macerals in the Callide Basin coals. Precise elemental, morphological and structural data, including electron diffraction, provides unambiguous evidence for the presence of kaolinite in the component known as micrinite. Indeed, micrinite consists predominantly of fine-grained kaolinite (>90 per cent of the component) and, as such, should not be considered a maceral.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Across central Australia and south-west Queensland, a large (~800,000km2) subsurface temperature anomaly occurs (Figure 1). Temperatures are interpreted to be greater than 235°C at 5km depth, ca. 85°C higher than the average geothermal gradient for the upper continental crust (Chopra & Holgate, 2005; Holgate & Gerner, 2011). This anomaly has driven the development of Engineered Geothermal Systems (EGS) at Innamincka, where high temperatures have been related to the radiogenic heat production of High Heat Producing Granites (HHPG) at depth, below thermally insulative sedimentary cover (Chopra & Holgate, 2005; Draper & D’Arcy, 2006; Meixner & Holgate, 2009). To evaluate the role of granitic rocks at depth in generating the broader temperature anomaly in SW-Queensland, we sampled 25 granitic rocks from basement intervals of petroleum drill cores below thermal insulative cover along two transects (WNW–ESE and NNE–SSW — Figure 1) and performed a multidisciplinary study involving petrography, whole-rock chemistry, zircon dating and thermal conductivity measurements.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Household air pollution (HAP), arising mainly from the combustion of solid and other polluting fuels, is responsible for a very substantial public health burden, most recently estimated as causing 3.5 million premature deaths in 2010. These patterns of household fuel use have also important negative impacts on safety, prospects for poverty reduction and the environment, including climate change. Building on previous air quality guidelines, the WHO is developing new guidelines focused on household fuel combustion, covering cooking, heating and lighting, and although global, the key focus is low and middle income countries reflecting the distribution of disease burden. As discussed in this paper, currently in development, the guidelines will include reviews of a wide range of evidence including fuel use in homes, emissions from stoves and lighting, household air pollution and exposure levels experienced by populations, health risks, impacts of interventions on HAP and exposure, and also key factors influencing sustainable and equitable adoption of improved stoves and cleaner fuels. GRADE, the standard method used for guidelines evidence review may not be well suited to the variety and nature of evidence required for this project, and a modified approach is being developed and tested. Work on the guidelines is being carried out in close collaboration with the UN Foundation Global Alliance on Clean cookstoves, allowing alignment with specific tools including recently developed international voluntary standards for stoves, and the development of country action plans. Following publication, WHO plans to work closely with a number of countries to learn from implementation efforts, in order to further strengthen support and guidance. A case study on the situation and policy actions to date in Bhutan provide an illustration of the challenges and opportunities involved, and the timely importance of the new guidelines and associated research, evaluation and policy development agendas.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This experimental study examines the effect on performance and emission outputs of a compression ignition engine operating on biodiesels of varying carbon chain length and the degree of unsaturation. A well-instrumented, heavy-duty, multi-cylinder, common-rail, turbo-charged diesel engine was used to ensure that the results contribute in a realistic way to the ongoing debate about the impact of biofuels. Comparative measurements are reported for engine performance as well as the emissions of NOx, particle number and size distribution, and the concentration of the reactive oxygen species (which provide a measure of the toxicity of emitted particles). It is shown that the biodiesels used in this study produce lower mean effective pressure, somewhat proportionally with their lower calorific values; however, the molecular structure has been shown to have little impact on the performance of the engine. The peak in-cylinder pressure is lower for the biodiesels that produce a smaller number of emitted particles, compared to fossil diesel, but the concentration of the reactive oxygen species is significantly higher because of oxygen in the fuels. The differences in the physicochemical properties amongst the biofuels and the fossil diesel significantly affect the engine combustion and emission characteristics. Saturated short chain length fatty acid methyl esters are found to enhance combustion efficiency, reduce NOx and particle number concentration, but results in high levels of fuel consumption.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Compression ignition (CI) engine design is subject to many constraints which presents a multi-criteria optimisation problem that the engine researcher must solve. In particular, the modern CI engine must not only be efficient, but must also deliver low gaseous, particulate and life cycle greenhouse gas emissions so that its impact on urban air quality, human health, and global warming are minimised. Consequently, this study undertakes a multi-criteria analysis which seeks to identify alternative fuels, injection technologies and combustion strategies that could potentially satisfy these CI engine design constraints. Three datasets are analysed with the Preference Ranking Organization Method for Enrichment Evaluations and Geometrical Analysis for Interactive Aid (PROMETHEE-GAIA) algorithm to explore the impact of 1): an ethanol fumigation system, 2): alternative fuels (20 % biodiesel and synthetic diesel) and alternative injection technologies (mechanical direct injection and common rail injection), and 3): various biodiesel fuels made from 3 feedstocks (i.e. soy, tallow, and canola) tested at several blend percentages (20-100 %) on the resulting emissions and efficiency profile of the various test engines. The results show that moderate ethanol substitutions (~20 % by energy) at moderate load, high percentage soy blends (60-100 %), and alternative fuels (biodiesel and synthetic diesel) provide an efficiency and emissions profile that yields the most “preferred” solutions to this multi-criteria engine design problem. Further research is, however, required to reduce Reactive Oxygen Species (ROS) emissions with alternative fuels, and to deliver technologies that do not significantly reduce the median diameter of particle emissions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Small-angle and ultra-small-angle neutron scattering (SANS and USANS) measurements were performed on samples from the Triassic Montney tight gas reservoir in Western Canada in order to determine the applicability of these techniques for characterizing the full pore size spectrum and to gain insight into the nature of the pore structure and its control on permeability. The subject tight gas reservoir consists of a finely laminated siltstone sequence; extensive cementation and moderate clay content are the primary causes of low permeability. SANS/USANS experiments run at ambient pressure and temperature conditions on lithologically-diverse sub-samples of three core plugs demonstrated that a broad pore size distribution could be interpreted from the data. Two interpretation methods were used to evaluate total porosity, pore size distribution and surface area and the results were compared to independent estimates derived from helium porosimetry (connected porosity) and low-pressure N2 and CO2 adsorption (accessible surface area and pore size distribution). The pore structure of the three samples as interpreted from SANS/USANS is fairly uniform, with small differences in the small-pore range (<2000 Å), possibly related to differences in degree of cementation, and mineralogy, in particular clay content. Total porosity interpreted from USANS/SANS is similar to (but systematically higher than) helium porosities measured on the whole core plug. Both methods were used to estimate the percentage of open porosity expressed here as a ratio of connected porosity, as established from helium adsorption, to the total porosity, as estimated from SANS/USANS techniques. Open porosity appears to control permeability (determined using pressure and pulse-decay techniques), with the highest permeability sample also having the highest percentage of open porosity. Surface area, as calculated from low-pressure N2 and CO2 adsorption, is significantly less than surface area estimates from SANS/USANS, which is due in part to limited accessibility of the gases to all pores. The similarity between N2 and CO2-accessible surface area suggests an absence of microporosity in these samples, which is in agreement with SANS analysis. A core gamma ray profile run on the same core from which the core plug samples were taken correlates to profile permeability measurements run on the slabbed core. This correlation is related to clay content, which possibly controls the percentage of open porosity. Continued study of these effects will prove useful in log-core calibration efforts for tight gas.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It is commonly assumed that rates of accumulation of organic-rich strata have varied through geologic time with some periods that were particularly favorable for accumulation of petroleum source rocks or coals. A rigorous analysis of the validity of such an assumption requires consideration of the basic fact that although sedimentary rocks have been lost through geologic time to erosion and metamorphism. Consequently, their present-day global abundance decreases with their geologic age. Measurements of the global abundance of coal-bearing strata suggest that conditions for coal accumulation were exceptionally favorable during the late Carboniferous. Strata of this age constitute 21% of the world's coal-bearing strata. Global rates of coal accumulation appear to have been relatively constant since the end of the Carboniferous, with the exception of the Triassic which contains only 1.75% of the world's coal-bearing strata. Estimation of the global amount of discovered oil by age of the source rock show that 58% of the world's oil has been sourced from Cretaceous or younger strata and 99% from Silurian or younger strata. Although most geologic periods were favourable for oil source-rock accumulation the mid-Permian to mid-Jurassic appears to have been particularly unfavourable accounting for less than 2% of the world's oil. Estimation of the global amount of discovered natural gas by age of the source rock show that 48% of the world's oil has been sourced from Cretaceous or younger strata and 99% from Silurian or younger strata. The Silurian and Late Carboniferous were particularly favourable for gas source-rock accumulation respectively accounting for 12.9% and 6.9% of the world's gas. By contrast, Permian and Triassic source rocks account for only 1.7% of the world's natural gas. Rather than invoking global climatic or oceanic events to explain the relative abundance of organic rich sediments through time, examination of the data suggests the more critical control is tectonic. The majority of coals are associated with foreland basins and the majority of oil-prone source rocks are associated with rifting. The relative abundance of these types of basin through time determines the abundance and location of coals and petroleum source rocks.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Physical and chemical properties of biofuel are influenced by structural features of fatty acid such as chain length, degree of unsaturation and branching of the chain. A simple and reliable calculation method to estimate fuel property is therefore needed to avoid experimental testing which is difficult, costly and time consuming. Typically in commercial biodiesel production such testing is done for every batch of fuel produced. In this study 9 different algae species were selected that were likely to be suitable for subtropical climates. The fatty acid methyl esters (FAMEs) of all algae species were analysed and the fuel properties like cetane number (CN), cold filter plugging point (CFPP), kinematic viscosity (KV), density and higher heating value (HHV) were determined. The relation of each fatty acid with particular fuel property is analysed using multivariate and multi-criteria decision method (MCDM) software. They showed that some fatty acids have major influences on the fuel properties whereas others have minimal influence. Based on the fuel properties and amounts of lipid content rank order is drawn by PROMETHEE-GAIA which helped to select the best algae species for biodiesel production in subtropical climates. Three species had fatty acid profiles that gave the best fuel properties although only one of these (Nannochloropsis oculata) is considered the best choice because of its higher lipid content.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Few would argue that the upstream oil and gas industry has become more technology- intensive over the years. At the same time, the increasing costs and complexity of today’s exploration and production (E&P) technologies are making it increasingly difficult for any one company to support an aggressive research and development (R&D) agenda single handedly. The coming together of these two evolutionary forces gives rise to important questions. How does innovation happen in the E&P industry? Specifically, what ideas and inputs flow from which parts of the industry’s value network, and where do these inputs go? And how do firms and organizations from different countries contribute differently to this process? This survey was designed to shed light on these issues.