192 resultados para Optimality conditions
Resumo:
Bovine intestine samples were heat pump fluidized bed dried at atmospheric pressure and at temperatures below and above the material freezing points equipped with a continuous monitoring system. The investigation of the drying characteristics has been conducted in the temperature range -10~25oC and the airflow in the range 1.5~2.5 m/s. Some experiments were conducted as a single temperature drying experiments and others as two stage drying experiments employing two temperatures. An Arrhenius-type equation was used to interpret the influence of the drying air parameters on the effective diffusivity, calculated with the method of slopes in terms of energy activation, and this was found to be sensitivity of the temperature. The effective diffusion coefficient of moisture transfer was determined by Fickian method using uni-dimensional moisture movement in both moisture, removal by evaporation and combined sublimation and evaporation. Correlations expressing the effective moisture diffusivity and drying temperature are reported.
Resumo:
It is well known that a broad range of ocular anatomical and physiological parameters undergo significant diurnal variation. However, the natural diurnal variations that occur in the length of the human eye (axial length) and their underlying causes have been less well studied. Improvements in optical methods for the measurement of ocular biometrics now allow more precise and comprehensive measurements of axial length to be performed than has previously been possible. Research from animal models also suggests a link between diurnal axial length variations and longer term myopic eye growth, and that retinal image defocus can disrupt these diurnal rhythms in axial length. This research programme has examined the diurnal variations in axial length in young normal eyes, the contributing components and the influence of optical stimuli on these changes. In the first experiment, the normal pattern and consistency of the diurnal variations in axial length were examined at 10 different times (5 measurements each day, at ~ 3-hour intervals from ~ 9 am to ~ 9 pm) over 2 consecutive days on 30 young adult subjects (15 myopes, 15 emmetropes). Additionally, variations in a range of other ocular biometric measurements such as choroidal thickness, intraocular pressure, and other ocular biometrics were also explored as potential factors that may be associated with the observed variations in axial length. To investigate the potential influence of refractive error on diurnal axial length variations, the differences in the magnitude and pattern of diurnal variations in axial length between the myopic and emmetropic subjects were examined. Axial length underwent significant diurnal variation that was consistently observed over the 2 consecutive days of measurements, with the longest axial length typically occurring during the day, and the shortest at night. Significant diurnal variations were also observed in choroidal thickness, IOP and other ocular biometrics (such as central corneal thickness, anterior chamber depth and vitreous chamber depth) of the eye. Diurnal variations in vitreous chamber depth, IOP (positive associations) and choroidal thickness (negative association) were all significantly correlated with the diurnal changes in axial length. Choroidal thickness was found to fluctuate approximately in antiphase to the axial length changes, with the average timing of the longest axial length coinciding with the thinnest choroid and vice versa. There were no significant differences in the ocular diurnal variations associated with refractive error. Given that the diurnal changes in axial length could be associated with the changes in the eye’s optical quality, whether the optical quality of the eye also undergoes diurnal variation in the same cohort of young adult myopes and emmetropes over 2 consecutive days was also examined. Significant diurnal variations were observed only in the best sphere refraction (power vector M) and in the spherical aberration of the eye over two consecutive days of testing. The changes in the eyes lower and higher order ocular optics were not significantly associated with the diurnal variations in axial length and the other measured ocular biometric parameters. No significant differences were observed in the magnitude and timing of diurnal variations in lower-order and higher-order optics associated with refractive error. Since the small natural fluctuations in the eye’s optical quality did not appear to be sufficient to influence the natural diurnal fluctuations in ocular biometric parameters, in the next experiment, the influence of monocular myopic defocus (+1.50 DS) upon the normal diurnal variations in axial length and choroidal thickness of young adult emmetropic human subjects (n=13) imposed over a 12 hour period was examined. A series of axial length and choroidal thickness measurements (collected at ~3 hourly intervals, with the first measurement at ~9 am and the final measurement at ~9 pm) were obtained over three consecutive days. The natural diurnal rhythms (Day 1, no defocus), diurnal rhythms with monocular myopic defocus (Day 2, +1.50 DS spectacle lens over the right eye), and the recovery from any defocus induced changes (Day 3, no defocus) were examined. Significant diurnal variations over the course of the day were observed in both axial length and choroidal thickness on each of the three measurement days. The introduction of monocular myopic defocus led to significant reductions in the mean amplitude of diurnal change, and phase shifts in the peak timing of the diurnal rhythms in axial length and choroidal thickness. These defocus induced changes were found to be transient in nature and returned to normal the day following removal of the defocus. To further investigate the influence of optical stimuli on human diurnal rhythms, in the final experiment, the influence of monocular hyperopic defocus on the normal diurnal rhythms in axial length and choroidal thickness was examined in young adult emmetropic subjects (n=15). Similar to the previous experiment, the natural diurnal rhythms (Day 1, no defocus), diurnal rhythms with monocular hyperopic defocus (Day 2, -2.00 DS spectacle lens over the right eye), and the recovery from any defocus induced changes (Day 3, no defocus) were examined over three consecutive days. Both axial length and choroidal thickness underwent significant diurnal variations on each of the three days. The introduction of monocular hyperopic defocus resulted in a significant increase in the amplitude of diurnal change, but no change in the peak timing of diurnal rhythms in both parameters. The ocular changes associated with hyperopic defocus returned to normal, the day following removal of the defocus. This research has shown that axial length undergoes significant diurnal variation in young adult human eyes, and has shown that the natural diurnal variations in choroidal thickness and IOP are significantly associated, and may underlie these diurnal fluctuations in axial length. This work also demonstrated for the first time that exposing young human eyes to monocular myopic and hyperopic defocus leads to a significant disruption in the normal diurnal rhythms of axial length and choroidal thickness. These changes in axial length with defocus may reflect underlying mechanisms in the human eye that are involved in the regulation of longer term eye growth.
Resumo:
Polycrystalline silver is used to catalytically oxidise methanol to formaldehyde. This paper reports the results of extensive investigations involving the use of environmental scanning electron microscopy (ESEM) to monitor structural changes in silver during simulated industrial reaction conditions. The interaction of oxygen, nitrogen, and water, either singly or in combination, with a silver catalyst at temperatures up to 973 K resulted in the appearance of a reconstructed silver surface. More spectacular was the effect an oxygen/methanol mixture had on the silver morphology. At a temperature of ca. 713 K pinholes were created in the vicinity of defects as a consequence of subsurface explosions. These holes gradually increased in size and large platelet features were created. Elevation of the catalyst temperature to 843 K facilitated the wholescale oxygen induced restructuring of the entire silver surface. Methanol reacted with subsurface oxygen to produce subsurface hydroxyl species which ultimately formed water in the subsurface layers of silver. The resultant hydrostatic pressure forced the silver surface to adopt a "hill and valley" conformation in order to minimise the surface free energy. Upon approaching typical industrial operating conditions widespread explosions occurred on the catalyst and it was also apparent that the silver surface was extremely mobile under the applied conditions. The interaction of methanol alone with silver resulted in the initial formation of pinholes primarily in the vicinity of defects, due to reaction with oxygen species incorporated in the catalyst during electrochemical synthesis. However, dramatic reduction in the hole concentration with time occurred as all the available oxygen became consumed. A remarkable correlation between formaldehyde production and hole concentration was found.
Resumo:
The effect of oxidation and reduction conditions upon the morphology of polycrystalline silver catalysts has been investigated by means of in situ Fourier-transform infrared (FTIR) spectroscopy. Characterization of the sample was achieved by inspection of the νas(COO) band profile of adsorbed formate, recorded after dosing with formic acid at ambient temperature. Evidence was obtained for the existence of a silver surface reconstructed by the presence of subsurface oxygen in addition to the conventional family of Ag(111) and Ag(110) crystal faces. Oxidation at 773 K facilitated the reconstruction of silver planes due to the formation of subsurface oxygen species. Prolonged oxygen treatment at 773 K also caused particle fragmentation as a consequence of excessive oxygen penetration of the silver catalyst at defect sites. It was also deduced that the presence of oxygen in the gas phase stabilized the growth of silver planes which could form stronger bonds with oxygen. In contrast, high-temperature thermal treatment in vacuum induced significant sintering of the silver catalyst. Reduction at 773 K resulted in substantial quantities of dissolved hydrogen (and probably hydroxy species) in the bulk silver structure. Furthermore, enhanced defect formation in the catalyst was also noted, as evidenced by the increased concentration of formate species associated with oxygen-reconstructed silver faces.
Resumo:
Grading osteoarthritic tissue has, until now, been a laboratory process confined to research activities. This thesis establishes a scientific protocol that extends osteoarthritic tissue ranking to surgical practice. The innovative protocol, which now incorporates the structural degeneration of collagen, enhances the traditional Modified Mankin ranking system, enabling its application to real time decision during surgery. Because it is fast and without time consuming laboratory process, it would potentially enable the cataloguing of tissues in osteoarthritic joints in all compartments of diseased joints during surgery for epistemological study and insight into the manifestation of osteoarthritis across age, gender, occupation, physical activities and race.
Resumo:
NAPLAN RESULTS HAVE gained socio-political prominence and have been used as indicators of educational outcomes for all students, including Indigenous students. Despite the promise of open and in-depth access to NAPLAN data as a vehicle for intervention, we argue that the use of NAPLAN data as a basis for teachers and schools to reduce variance in learning outcomes is insufficient. NAPLAN tests are designed to show statistical variance at the level of the school and the individual, yet do not factor in the sociocultural and cognitive conditions Indigenous students’ experience when taking the tests. We contend that further understanding of these influences may help teachers understand how to develop their classroom practices to secure better numeracy and literacy outcomes for all students. Empirical research findings demonstrate how teachers can develop their classroom practices from an understanding of the extraneous cognitive load imposed by test taking. We have analysed Indigenous students’ experience of solving mathematical test problems to discover evidence of extraneous cognitive load. We have also explored conditions that are more supportive of learning derived from a classroom intervention which provides an alternative way to both assess and build learning for Indigenous students. We conclude that conditions to support assessment for more equitable learning outcomes require a reduction in cognitive load for Indigenous students while maintaining a high level of expectation and participation in problem solving.
Resumo:
A significant amount of speech data is required to develop a robust speaker verification system, but it is difficult to find enough development speech to match all expected conditions. In this paper we introduce a new approach to Gaussian probabilistic linear discriminant analysis (GPLDA) to estimate reliable model parameters as a linearly weighted model taking more input from the large volume of available telephone data and smaller proportional input from limited microphone data. In comparison to a traditional pooled training approach, where the GPLDA model is trained over both telephone and microphone speech, this linear-weighted GPLDA approach is shown to provide better EER and DCF performance in microphone and mixed conditions in both the NIST 2008 and NIST 2010 evaluation corpora. Based upon these results, we believe that linear-weighted GPLDA will provide a better approach than pooled GPLDA, allowing for the further improvement of GPLDA speaker verification in conditions with limited development data.
Resumo:
The reduction of the health literacy concept to a functional relationship with text, does not acknowledge the range of information sources that people draw from in order to make informed decision about their health and treatment. Drawing from two studies that explored how people with two different but complex and life-threatening chronic health conditions, chronic kidney disease and HIV, a socio-cultural understanding of the practise of health literacy is described. Health information is experienced by patients as a chronic health condition landscape, and develops from three information sources; namely epistemic, social and corporeal sources. Participants in both studies used activities that involved orienting, sharing and creating information to map this landscape which was used to inform their decision-making. These findings challenge the traditional conceptions of health literacy and suggest an approach that views the landscape of chronic illness as being socially, physically and contextually constructed. This approach necessitates a recasting of health literacy away from a sole interest in skills and towards understanding how information practices facilitate people becoming health literate.
Resumo:
This article examines the conditions of penal hope behind suggestions that the penal expansionism of the last three decades may be at a ‘turning point’. The article proceeds by outlining David Green’s (2013b) suggested catalysts of penal reform and considers how applicable they are in the Australian context. Green’s suggested catalysts are: the cycles and saturation thesis; shifts in the dominant conception of the offender; the global financial crisis (GFC) and budgetary constraints; the drop in crime; the emergence of the prisoner re‐entry movement; apparent shifts in public opinion; the influence of evangelical Christian ideas; and the Right on Crime initiative. The article then considers a number of other possible catalysts or forces: the role of trade unions; the role of courts; the emergence of recidivism as a political issue; the influence of ‘evidence based’/‘what works’ discourse; and the emergence of justice reinvestment (JR). The article concludes with some comments about the capacity of criminology and criminologists to contribute to penal reductionism, offering an optimistic assessment for the prospects of a reflexive criminology that engages in and engenders a wider politics around criminal justice issues.
Resumo:
The ability of the technique of large-amplitude Fourier transformed (FT) ac voltammetry to facilitate the quantitative evaluation of electrode processes involving electron transfer and catalytically coupled chemical reactions has been evaluated. Predictions derived on the basis of detailed simulations imply that the rate of electron transfer is crucial, as confirmed by studies on the ferrocenemethanol (FcMeOH)-mediated electrocatalytic oxidation of ascorbic acid. Thus, at glassy carbon, gold, and boron-doped diamond electrodes, the introduction of the coupled electrocatalytic reaction, while producing significantly enhanced dc currents, does not affect the ac harmonics. This outcome is as expected if the FcMeOH (0/+) process remains fully reversible in the presence of ascorbic acid. In contrast, the ac harmonic components available from FT-ac voltammetry are predicted to be highly sensitive to the homogeneous kinetics when an electrocatalytic reaction is coupled to a quasi-reversible electron-transfer process. The required quasi-reversible scenario is available at an indium tin oxide electrode. Consequently, reversible potential, heterogeneous charge-transfer rate constant, and charge-transfer coefficient values of 0.19 V vs Ag/AgCl, 0.006 cm s (-1) and 0.55, respectively, along with a second-order homogeneous chemical rate constant of 2500 M (-1) s (-1) for the rate-determining step in the catalytic reaction were determined by comparison of simulated responses and experimental voltammograms derived from the dc and first to fourth ac harmonic components generated at an indium tin oxide electrode. The theoretical concepts derived for large-amplitude FT ac voltammetry are believed to be applicable to a wide range of important solution-based mediated electrocatalytic reactions.
Resumo:
In order to establish the influence of the drying air characteristics on the drying performance and fluidization quality of bovine intestine for pet food, several drying tests have been carried out in a laboratory scale heat pump assisted fluid bed dryer. Bovine intestine samples were heat pump fluidized bed dried at atmospheric pressure and at temperatures below and above the materials freezing points, equipped with a continuous monitoring system. The investigation of the drying characteristics have been conducted in the temperature range −10 to 25 ◦C and the airflow in the range 1.5–2.5 m/s. Some experiments were conducted as single temperature drying experiments and others as two stage drying experiments employing two temperatures. An Arrhenius-type equation was used to interpret the influence of the drying air temperature on the effective diffusivity, calculated with the method of slopes in terms of energy activation, and this was found to be sensitive to the temperature. The effective diffusion coefficient of moisture transfer was determined by the Fickian method using uni-dimensional moisture movement in both moisture, removal by evaporation and combined sublimation and evaporation. Correlations expressing the effective moisture diffusivity and drying temperature are reported. Bovine particles were characterized according to the Geldart classification and the minimum fluidization velocity was calculated using the Ergun Equation and generalized equation for all drying conditions at the beginning and end of the trials. Walli’s model was used to categorize stability of the fluidization at the beginning and end of the dryingv for each trial. The determined Walli’s values were positive at the beginning and end of all trials indicating stable fluidization at the beginning and end for each drying condition.
Resumo:
Spatial organisation of proteins according to their function plays an important role in the specificity of their molecular interactions. Emerging proteomics methods seek to assign proteins to sub-cellular locations by partial separation of organelles and computational analysis of protein abundance distributions among partially separated fractions. Such methods permit simultaneous analysis of unpurified organelles and promise proteome-wide localisation in scenarios wherein perturbation may prompt dynamic re-distribution. Resolving organelles that display similar behavior during a protocol designed to provide partial enrichment represents a possible shortcoming. We employ the Localisation of Organelle Proteins by Isotope Tagging (LOPIT) organelle proteomics platform to demonstrate that combining information from distinct separations of the same material can improve organelle resolution and assignment of proteins to sub-cellular locations. Two previously published experiments, whose distinct gradients are alone unable to fully resolve six known protein-organelle groupings, are subjected to a rigorous analysis to assess protein-organelle association via a contemporary pattern recognition algorithm. Upon straightforward combination of single-gradient data, we observe significant improvement in protein-organelle association via both a non-linear support vector machine algorithm and partial least-squares discriminant analysis. The outcome yields suggestions for further improvements to present organelle proteomics platforms, and a robust analytical methodology via which to associate proteins with sub-cellular organelles.
Resumo:
The diagnostics of mechanical components operating in transient conditions is still an open issue, in both research and industrial field. Indeed, the signal processing techniques developed to analyse stationary data are not applicable or are affected by a loss of effectiveness when applied to signal acquired in transient conditions. In this paper, a suitable and original signal processing tool (named EEMED), which can be used for mechanical component diagnostics in whatever operating condition and noise level, is developed exploiting some data-adaptive techniques such as Empirical Mode Decomposition (EMD), Minimum Entropy Deconvolution (MED) and the analytical approach of the Hilbert transform. The proposed tool is able to supply diagnostic information on the basis of experimental vibrations measured in transient conditions. The tool has been originally developed in order to detect localized faults on bearings installed in high speed train traction equipments and it is more effective to detect a fault in non-stationary conditions than signal processing tools based on spectral kurtosis or envelope analysis, which represent until now the landmark for bearings diagnostics.
Resumo:
In the field of rolling element bearing diagnostics envelope analysis, and in particular the squared envelope spectrum, have gained in the last years a leading role among the different digital signal processing techniques. The original constraint of constant operating speed has been relaxed thanks to the combination of this technique with the computed order tracking, able to resample signals at constant angular increments. In this way, the field of application of squared envelope spectrum has been extended to cases in which small speed fluctuations occur, maintaining the effectiveness and efficiency that characterize this successful technique. However, the constraint on speed has to be removed completely, making envelope analysis suitable also for speed and load transients, to implement an algorithm valid for all the industrial application. In fact, in many applications, the coincidence of high bearing loads, and therefore high diagnostic capability, with acceleration-deceleration phases represents a further incentive in this direction. This paper is aimed at providing and testing a procedure for the application of envelope analysis to speed transients. The effect of load variation on the proposed technique will be also qualitatively addressed.
Resumo:
Diagnostics of rolling element bearings involves a combination of different techniques of signal enhancing and analysis. The most common procedure presents a first step of order tracking and synchronous averaging, able to remove the undesired components, synchronous with the shaft harmonics, from the signal, and a final step of envelope analysis to obtain the squared envelope spectrum. This indicator has been studied thoroughly, and statistically based criteria have been obtained, in order to identify damaged bearings. The statistical thresholds are valid only if all the deterministic components in the signal have been removed. Unfortunately, in various industrial applications, characterized by heterogeneous vibration sources, the first step of synchronous averaging is not sufficient to eliminate completely the deterministic components and an additional step of pre-whitening is needed before the envelope analysis. Different techniques have been proposed in the past with this aim: The most widely spread are linear prediction filters and spectral kurtosis. Recently, a new technique for pre-whitening has been proposed, based on cepstral analysis: the so-called cepstrum pre-whitening. Owing to its low computational requirements and its simplicity, it seems a good candidate to perform the intermediate pre-whitening step in an automatic damage recognition algorithm. In this paper, the effectiveness of the new technique will be tested on the data measured on a full-scale industrial bearing test-rig, able to reproduce the harsh conditions of operation. A benchmark comparison with the traditional pre-whitening techniques will be made, as a final step for the verification of the potentiality of the cepstrum pre-whitening.