188 resultados para Oil storage tanks
Resumo:
Frequency Domain Spectroscopy (FDS) is used to assess the insulation condition of oil-paper power transformers. Dissipation factor is one of the conventional indicators to analyze insulation ageing status. In this paper, the imaginary admittance of the transformers insulation, after removal of the geometric capacitance, is proposed as an alternative indicator to assist in the interpretation of ageing status. Ageing effects on the imaginary admittance are investigated both through simulation results and experimental results.
Resumo:
This paper proposes a new distributed coordination approach to make load leveling, using Energy Storage Units (ESUs) in LV network. The proposed distributed control strategy is based on consensus algorithm which shares the required active power equally among the ESUs with respect to their rating. To show the effectiveness of the proposed approach, a typical radial LV network is simulated as a case study.
Resumo:
A novel intelligent online demand side management system is proposed for peak load management. The method also regulates the network voltage, balances the power in three phases and coordinates the battery storage discharge within the network. This method uses low cost controllers with low bandwidth two-way communication installed in costumers' premises and at distribution transformers to manage the peak load while maximizing customer satisfaction. A multi-objective decision making process is proposed to select the load(s) to be delayed or controlled. The efficacy of the proposed control system is verified through an event-based developed simulation in Matlab.
Resumo:
In this paper, load profile and operational goal are used to find optimal sizing of combined PV-energy storage for a future grid-connected residential building. As part of this approach, five operational goals are introduced and the annual cost for each operation goal has been assessed. Finally, the optimal sizing for combined PV-energy storage has been determined, using direct search method. In addition, sensitivity of the annual cost to different parameters has been analyzed.
Resumo:
This work was focused on studies of the metal hydride materials having a potential in building hydrogen storage systems with high gravimetric and volumetric efficiencies of H storage and formed / decomposed with high rates of hydrogen exchange. In situ diffraction studies of the metal-hydrogen systems were explored as a valuable tool in probing both the mechanism of the phase-structural transformations and their kinetics. Two complementary techniques, namely Neutron Powder Diffraction (NPD) and Synchrotron X-ray diffraction (SR XRD) were utilised. High pressure in situ NPD studies were performed at D2 pressures reaching 1000 bar at the D1B diffractometer accommodated at Institute Laue Langevin, Grenoble. The data of the time resolved in situ SR XRD were collected at the Swiss Norwegian Beam Lines, ESRF, Grenoble in the pressure range up to 50 bar H2 at temperatures 20-400°C. The systems studied by NPD at high pressures included deuterated Al-modified Laves-type C15 ZrFe2-xAlx intermetallics with x = 0.02; 0.04 and 0.20 and the CeNi5-D2 system. D content, hysteresis of H uptake and release, unit cell expansion and stability of the hydrides systematically change with Al content. Deuteration exhibited a very fast kinetics; it resulted in increase of the unit cells volumes reaching 23.5 % for ZrFe1.98Al0.02D2.9(1) and associated with exclusive occupancy of the Zr2(Fe,Al)2 tetrahedra. For CeNi5 deuteration yielded a hexahydride CeNi5D6.2 (20°C, 776 bar D2) and was accompanied by a nearly isotropic volume expansion reaching 30.1% (∆a/a=10.0%; ∆c/c=7.5%). Deuterium atoms fill three different interstitial sites including Ce2Ni2, Ce2Ni3 and Ni4. Significant hysteresis was observed on the first absorption-desorption cycle. This hysteresis decreased on the absorption-desorption cycling. A different approach to the development of H storage systems is based on the hydrides of light elements, first of all the Mg-based ones. These systems were studied by SR XRD. Reactive ball milling in hydrogen (HRBM) allowed synthesis of the nanostructured Mg-based hydrides. The experimental parameters (PH2, T, energy of milling, ball / sample ratio and balls size), significantly influence rate of hydrogenation. The studies confirmed (a) a completeness of hydrogenation of Mg into MgH2; (b) indicated a partial transformation of the originally formed -MgH2 into a metastable -MgH2 (a ratio / was 3/1); (c) yielded the crystallite size for the main hydrogenation product, -MgH2, as close to 10 nm. Influence of the additives to Mg on the structure and hydrogen absorption/desorption properties and cycle behaviour of the composites was established and will be discussed in the paper.
Resumo:
This paper presents two novel nonlinear models of u-shaped anti-roll tanks for ships, and their linearizations. In addition, a third simplified nonlinear model is presented. The models are derived using Lagrangian mechanics. This formulation not only simplifies the modeling process, but also allows one to obtain models that satisfy energy-related physical properties. The proposed nonlinear models and their linearizations are validated using model-scale experimental data. Unlike other models in the literature, the nonlinear models in this paper are valid for large roll amplitudes. Even at moderate roll angles, the nonlinear models have three orders of magnitude lower mean square error relative to experimental data than the linear models.
Resumo:
Biodiesel derived from microalgae is one of a suite of potential solutions to meet the increasing demand for a renewable, carbon-neutral energy source. However, there are numerous challenges that must be addressed before algae biodiesel can become commercially viable. These challenges include the economic feasibility of harvesting and dewatering the biomass and the extraction of lipids and their conversion into biodiesel. Therefore, it is essential to find a suitable extraction process given these processes presently contribute significantly to the total production costs which, at this stage, inhibit the ability of biodiesel to compete financially with petroleum diesel. This study focuses on pilot-scale (100 kg dried microalgae) solvent extraction of lipids from microalgae and subsequent transesterification to biodiesel. Three different solvents (hexane, isopropanol (IPA) and hexane + IPA (1:1)) were used with two different extraction methods (static and Soxhlet) at bench-scale to find the most suitable solvent extraction process for the pilot-scale. The Soxhlet method extracted only 4.2% more lipid compared to the static method. However, the fatty acid profiles of different extraction methods with different solvents are similar, suggesting that none of the solvents or extraction processes were biased for extraction of particular fatty acids. Considering the cost and availability of the solvents, hexane was chosen for pilot-scale extraction using static extraction. At pilot-scale the lipid yield was found to be 20.3% of total biomass which is 2.5% less than from bench scale. Extracted fatty acids were dominated by polyunsaturated fatty acids (PUFAs) (68.94±0.17%) including 47.7±0.43 and 17.86±0.42% being docosahexaenoic acid (DHA) (C22:6) and docosapentaenoic acid (DPA) (C22:5, ω-3), respectively. These high amounts of long chain poly unsaturated fatty acids are unique to some marine microalgae and protists and vary with environmental conditions, culture age and nutrient status, as well as with cultivation process. Calculated physical and chemical properties of density, viscosity of transesterified fatty acid methyl esters (FAMEs) were within the limits of the biodiesel standard specifications as per ASTM D6751-2012 and EN 14214. The calculated cetane number was, however, significantly lower (17.8~18.6) compared to ASTM D6751-2012 or EN 14214-specified minimal requirements. We conclude that the obtained microalgal biodiesel would likely only be suitable for blending with petroleum diesel to a maximum of 5 to 20%.
Resumo:
This project was a step forward in developing a 'descriptive theory' of contracting in the oil and gas industry that reflects the operating environment in which the project manager operates. This study investigates the existing processes and methods used in establishing contracts which are very often prescriptive, and not always appropriate or optimal for a given situation. This study contributes to contracting effectiveness or optimal contracting in the oil and gas industry.
Resumo:
Parametric ship roll resonance is a phenomenon where a ship can rapidly develop high roll motion while sailing in longitudinal waves. This effect can be described mathematically by periodic changes of the parameters of the equations of motion, which lead to a bifurcation. In this paper, the control design of an active u-tank stabilizer is carried out using Lyapunov theory. A nonlinear backstepping controller is developed to provide global exponential stability of roll. An extension of commonly used u-tank models is presented to account for large roll angles, and the control design is tested via simulation on a high-fidelity model of a vessel under parametric roll resonance.
Resumo:
A statistical approach is used in the design of a battery-supercapacitor energy storage system for a wind farm. The design exploits the technical merits of the two energy storage mediums, in terms of the differences in their specific power and energy densities, and their ability to accommodate different rates of change in the charging/discharging powers. By treating the input wind power as random and using a proposed coordinated power flows control strategy for the battery and the supercapacitor, the approach evaluates the energy storage capacities, the corresponding expected life cycle cost/year of the storage mediums, and the expected cost/year of unmet power dispatch. A computational procedure is then developed for the design of a least-cost/year hybrid energy storage system to realize wind power dispatch at a specified confidence level.
Resumo:
This paper presents the modeling and position-sensorless vector control of a dual-airgap axial flux permanent magnet (AFPM) machine optimized for use in flywheel energy storage system (FESS) applications. The proposed AFPM machine has two sets of three-phase stator windings but requires only a single power converter to control both the electromagnetic torque and the axial levitation force. The proper controllability of the latter is crucial as it can be utilized to minimize the vertical bearing stress to improve the efficiency of the FESS. The method for controlling both the speed and axial displacement of the machine is discussed. An inherent speed sensorless observer is also proposed for speed estimation. The proposed observer eliminates the rotary encoder, which in turn reduces the overall weight and cost of the system while improving its reliability. The effectiveness of the proposed control scheme has been verified by simulations and experiments on a prototype machine.
Resumo:
In this paper, a wind energy conversion system interfaced to the grid using a dual inverter is proposed. One of the two inverters in the dual inverter is connected to the rectified output of the wind generator while the other is directly connected to a battery energy storage system (BESS). This approach eliminates the need for an additional dc-dc converter and thus reduces power losses, cost, and complexity. The main issue with this scheme is uncorrelated dynamic changes in dc-link voltages that results in unevenly distributed space vectors. A detailed analysis on the effects of these variations is presented in this paper. Furthermore, a modified modulation technique is proposed to produce undistorted currents even in the presence of unevenly distributed and dynamically changing space vectors. An analysis on the battery charging/discharging process and maximum power point tracking of the wind turbine generator is also presented. Simulation and experimental results are presented to verify the efficacy of the proposed modulation technique and battery charging/discharging process.
Resumo:
Purpose To investigate the effects of a natural oil-based emulsion containing allantoin versus aqueous cream for preventing and managing radiation induced skin reactions (RISR). Methods and Materials A total of 174 patients were randomised and participated in the study. Patients either received Cream 1 (the natural oil-based emulsion containing allantoin) or Cream 2 (aqueous cream). Skin toxicity, pain, itching and skin-related quality of life scores were collected for up to four weeks after radiation treatment. Results Patients who received Cream 1 had a significantly lower average level of Common Toxicity Criteria at week 3 (p<0.05), but had statistically higher average levels of skin toxicity at weeks 7, 8 and 9 (all p<0.001). Similar results were observed when skin toxicity was analysed by grades. With regards to pain, patients in the Cream 2 group had a significantly higher average level of worst pain (p<0.05) and itching (p=0.046) compared to the Cream 1 group at week 3, however these differences were not observed at other weeks. In addition, there was a strong trend for Cream 2 to reduce the incidence of grade 2 or more skin toxicity in comparison to Cream 1 (p=0.056). Overall, more participants in the Cream 1 group were required to use another topical treatment at weeks 8 (p=0.049) and 9 (p=0.01). Conclusion The natural oil-based emulsion containing allantoin appears to have similar effects for managing skin toxicity compared to aqueous cream up to week 5, however, it becomes significantly less effective at later weeks into the radiation treatment and beyond treatment completion (week 6 and beyond). There were no major differences in pain, itching and skin-related quality of life. In light of these results, clinicians and patients can base their decision on costs and preferences. Overall, aqueous cream appears to be a more preferred option.
Resumo:
Design of a battery energy storage system (BESS) in a buffer scheme is examined for the purpose of attenuating the effects of unsteady input power from wind farms. The design problem is formulated as maximization of an objective function that measures the economic benefit obtainable from the dispatched power from the wind farm against the cost of the BESS. Solution to the problem results in the determination of the capacity of the BESS to ensure constant dispatched power to the connected grid, while the voltage level across the dc-link of the buffer is kept within preset limits. A computational procedure to determine the BESS capacity and the evaluation of the dc voltage is shown. Illustrative examples using the proposed design method are included.
Resumo:
This paper examines a buffer scheme to mitigate the negative impacts of power-conditioned loads on network voltage and transient stabilities. The scheme is based on the use of battery energy-storage systems in the buffers. The storage systems ensure that protected loads downstream of the buffers can ride through upstream voltage sags and swells. Also, by controlling the buffers to operate in either constant impedance or constant power modes, power is absorbed or injected by the storage systems. The scheme thereby regulates the rotor-angle deviations of generators and enhances network transient stability. A computational method is described in which the capacity of the storage systems is determined to achieve simultaneously the above dual objectives of load ride-through and stability enhancement. The efficacy of the resulting scheme is demonstrated through numerical examples.