119 resultados para Neural classifiers
Resumo:
Despite moral prohibitions on hurting other humans, some social contexts allow for harmful actions such as the killing of others. One example is warfare, where killing enemy soldiers is seen as morally justified. Yet, the neural underpinnings distinguishing between justified and unjustified killing are largely unknown. To improve understanding of the neural processes involved in justified and unjustified killing, participants had to imagine being the perpetrator whilst watching “first-person perspective” animated videos where they shot enemy soldiers (‘justified violence’) and innocent civilians (‘unjustified violence’). When participants imagined themselves shooting civilians compared to soldiers, greater activation was found in the lateral orbitofrontal cortex (OFC). Regression analysis revealed that the more guilt participants felt about shooting civilians, the greater the response in the lateral OFC. Effective connectivity analyses further revealed an increased coupling between lateral OFC and the tempoparietal junction (TPJ) when shooting civilians. The results show that the neural mechanisms typically implicated with harming others, such as the OFC, become less active when the violence against a particular group is seen as justified. This study therefore provides unique insight into how normal individuals can become aggressors in specific situations.
Resumo:
Details the developments to date of an unmanned air vehicle (UAV) based on a standard size 60 model helicopter. The design goal is to have the helicopter achieve stable hover with the aid of an INS and stereo vision. The focus of the paper is on the development of an artificial neural network (ANN) that makes use of only the INS data to generate hover commands, which are used to directly manipulate the flight servos. Current results show that networks incorporating some form of recurrency (state history) offer little advantage over those without. At this stage, the ANN has partially maintained periods of hover even with misaligned sensors.
Resumo:
Advances in neural network language models have demonstrated that these models can effectively learn representations of words meaning. In this paper, we explore a variation of neural language models that can learn on concepts taken from structured ontologies and extracted from free-text, rather than directly from terms in free-text. This model is employed for the task of measuring semantic similarity between medical concepts, a task that is central to a number of techniques in medical informatics and information retrieval. The model is built with two medical corpora (journal abstracts and patient records) and empirically validated on two ground-truth datasets of human-judged concept pairs assessed by medical professionals. Empirically, our approach correlates closely with expert human assessors ($\approx$ 0.9) and outperforms a number of state-of-the-art benchmarks for medical semantic similarity. The demonstrated superiority of this model for providing an effective semantic similarity measure is promising in that this may translate into effectiveness gains for techniques in medical information retrieval and medical informatics (e.g., query expansion and literature-based discovery).
Resumo:
Neural interface devices and the melding of mind and machine, challenge the law in determining where civil liability for injury, damage or loss should lie. The ability of the human mind to instruct and control these devices means that in a negligence action against a person with a neural interface device, determining the standard of care owed by him or her will be of paramount importance. This article considers some of the factors that may influence the court’s determination of the appropriate standard of care to be applied in this situation, leading to the conclusion that a new standard of care might evolve.
Resumo:
We investigated the neural correlates of semantic priming by using event-related fMRI to record blood oxygen level dependent (BOLD) responses while participants performed speeded lexical decisions (word/nonword) on visually presented related versus unrelated prime-target pairs. A long stimulus onset asynchrony of 1000 ms was employed, which allowed for increased controlled processing and selective frequency-based ambiguity priming. Conditions included an ambiguous word prime (e.g. bank) and a target related to its dominant (e.g. money) or subordinate meaning (e.g. river). Compared to an unrelated condition, primed dominant targets were associated with increased activity in the LIFG, the right anterior cingulate and superior temporal gyrus, suggesting postlexical semantic integrative mechanisms, while increased right supramarginal activity for the unrelated condition was consistent with expectancy based priming. Subordinate targets were not primed and were associated with reduced activity primarily in occipitotemporal regions associated with word recognition, which may be consistent with frequency-based meaning suppression. These findings provide new insights into the neural substrates of semantic priming and the functional-anatomic correlates of lexical ambiguity suppression mechanisms.
Resumo:
Naming impairments in aphasia are typically targeted using semantic and/or phonologically based tasks. However, it is not known whether these treatments have different neural mechanisms. Eight participants with aphasia received twelve treatment sessions using an alternating treatment design, with fMRI scans pre- and post-treatment. Half the sessions employed Phonological Components Analysis (PCA), and half the sessions employed Semantic Feature Analysis (SFA). Pre-treatment activity in the left caudate correlated with greater immediate treatment success for items treated with SFA, whereas recruitment of the left supramarginal gyrus and right precuneus post-treatment correlated with greater immediate treatment success for items treated with PCA. The results support previous studies that have found greater treatment outcome to be associated with activity in predominantly left hemisphere regions, and suggest that different mechanisms may be engaged dependent on the type of treatment employed.
Resumo:
The latest generation of Deep Convolutional Neural Networks (DCNN) have dramatically advanced challenging computer vision tasks, especially in object detection and object classification, achieving state-of-the-art performance in several computer vision tasks including text recognition, sign recognition, face recognition and scene understanding. The depth of these supervised networks has enabled learning deeper and hierarchical representation of features. In parallel, unsupervised deep learning such as Convolutional Deep Belief Network (CDBN) has also achieved state-of-the-art in many computer vision tasks. However, there is very limited research on jointly exploiting the strength of these two approaches. In this paper, we investigate the learning capability of both methods. We compare the output of individual layers and show that many learnt filters and outputs of the corresponding level layer are almost similar for both approaches. Stacking the DCNN on top of unsupervised layers or replacing layers in the DCNN with the corresponding learnt layers in the CDBN can improve the recognition/classification accuracy and training computational expense. We demonstrate the validity of the proposal on ImageNet dataset.
Resumo:
In this report an artificial neural network (ANN) based automated emergency landing site selection system for unmanned aerial vehicle (UAV) and general aviation (GA) is described. The system aims increase safety of UAV operation by emulating pilot decision making in emergency landing scenarios using an ANN to select a safe landing site from available candidates. The strength of an ANN to model complex input relationships makes it a perfect system to handle the multicriteria decision making (MCDM) process of emergency landing site selection. The ANN operates by identifying the more favorable of two landing sites when provided with an input vector derived from both landing site's parameters, the aircraft's current state and wind measurements. The system consists of a feed forward ANN, a pre-processor class which produces ANN input vectors and a class in charge of creating a ranking of landing site candidates using the ANN. The system was successfully implemented in C++ using the FANN C++ library and ROS. Results obtained from ANN training and simulations using randomly generated landing sites by a site detection simulator data verify the feasibility of an ANN based automated emergency landing site selection system.
Resumo:
This paper addresses the following predictive business process monitoring problem: Given the execution trace of an ongoing case,and given a set of traces of historical (completed) cases, predict the most likely outcome of the ongoing case. In this context, a trace refers to a sequence of events with corresponding payloads, where a payload consists of a set of attribute-value pairs. Meanwhile, an outcome refers to a label associated to completed cases, like, for example, a label indicating that a given case completed “on time” (with respect to a given desired duration) or “late”, or a label indicating that a given case led to a customer complaint or not. The paper tackles this problem via a two-phased approach. In the first phase, prefixes of historical cases are encoded using complex symbolic sequences and clustered. In the second phase, a classifier is built for each of the clusters. To predict the outcome of an ongoing case at runtime given its (uncompleted) trace, we select the closest cluster(s) to the trace in question and apply the respective classifier(s), taking into account the Euclidean distance of the trace from the center of the clusters. We consider two families of clustering algorithms – hierarchical clustering and k-medoids – and use random forests for classification. The approach was evaluated on four real-life datasets.
Resumo:
Recent advances in neural language models have contributed new methods for learning distributed vector representations of words (also called word embeddings). Two such methods are the continuous bag-of-words model and the skipgram model. These methods have been shown to produce embeddings that capture higher order relationships between words that are highly effective in natural language processing tasks involving the use of word similarity and word analogy. Despite these promising results, there has been little analysis of the use of these word embeddings for retrieval. Motivated by these observations, in this paper, we set out to determine how these word embeddings can be used within a retrieval model and what the benefit might be. To this aim, we use neural word embeddings within the well known translation language model for information retrieval. This language model captures implicit semantic relations between the words in queries and those in relevant documents, thus producing more accurate estimations of document relevance. The word embeddings used to estimate neural language models produce translations that differ from previous translation language model approaches; differences that deliver improvements in retrieval effectiveness. The models are robust to choices made in building word embeddings and, even more so, our results show that embeddings do not even need to be produced from the same corpus being used for retrieval.
Resumo:
The suitability of human mesenchymal stem cells (hMSCs) in regenerative medicine relies on retention of their proliferative expansion potential in conjunction with the ability to differentiate toward multiple lineages. Successful utilisation of these cells in clinical applications linked to tissue regeneration requires consideration of biomarker expression, time in culture and donor age, as well as their ability to differentiate towards mesenchymal (bone, cartilage, fat) or non-mesenchymal (e.g., neural) lineages. To identify potential therapeutic suitability we examined hMSCs after extended expansion including morphological changes, potency (stemness) and multilineage potential. Commercially available hMSC populations were expanded in vitro for > 20 passages, equating to > 60 days and > 50 population doublings. Distinct growth phases (A-C) were observed during serial passaging and cells were characterised for stemness and lineage markers at representative stages (Phase A: P+5, approximately 13 days in culture; Phase B: P+7, approximately 20 days in culture; and Phase C: P+13, approximately 43 days in culture). Cell surface markers, stem cell markers and lineage-specific markers were characterised by FACS, ICC and Q-PCR revealing MSCs maintained their multilineage potential, including neural lineages throughout expansion. Co-expression of multiple lineage markers along with continued CD45 expression in MSCs did not affect completion of osteogenic and adipogenic specification or the formation of neurospheres. Improved standardised isolation and characterisation of MSCs may facilitate the identification of biomarkers to improve therapeutic efficacy to ensure increased reproducibility and routine production of MSCs for therapeutic applications including neural repair.
Resumo:
Multipotent neural stem cells (NSCs) provide a model to investigate neurogenesis and develop mechanisms of cell transplantation. In order to define improved markers of stemness and lineage specificity, we examined self-renewal and multi-lineage markers during long-term expansion and under neuronal and astrocyte differentiating conditions in human ESC-derived NSCs (hNSC H9 cells). In addition, with proteoglycans ubiquitous to the neural niche, we also examined heparan sulfate proteoglycans (HSPGs) and their regulatory enzymes. Our results demonstrate that hNSC H9 cells maintain self-renewal and multipotent capacity during extended culture and express HS biosynthesis enzymes and several HSPG core protein syndecans (SDCs) and glypicans (GPCs) at a high level. In addition, hNSC H9 cells exhibit high neuronal and a restricted glial differentiative potential with lineage differentiation significantly increasing expression of many HS biosynthesis enzymes. Furthermore, neuronal differentiation of the cells upregulated SDC4, GPC1, GPC2, GPC3 and GPC6 expression with increased GPC4 expression observed under astrocyte culture conditions. Finally, downregulation of selected HSPG core proteins altered hNSC H9 cell lineage potential. These findings demonstrate an involvement for HSPGs in mediating hNSC maintenance and lineage commitment and their potential use as novel markers of hNSC and neural cell lineage specification.
Resumo:
Little is known about the neural mechanisms by which transcranial direct current stimulation (tDCS) impacts on language processing in post-stroke aphasia. This was addressed in a proof-of-principle study that explored the effects of tDCS application in aphasia during simultaneous functional magnetic resonance imaging (fMRI). We employed a single subject, cross-over, sham-tDCS controlled design, and the stimulation was administered to an individualized perilesional stimulation site that was identified by a baseline fMRI scan and a picture naming task. Peak activity during the baseline scan was located in the spared left inferior frontal gyrus and this area was stimulated during a subsequent cross-over phase. tDCS was successfully administered to the target region and anodal- vs. sham-tDCS resulted in selectively increased activity at the stimulation site. Our results thus demonstrate that it is feasible to precisely target an individualized stimulation site in aphasia patients during simultaneous fMRI, which allows assessing the neural mechanisms underlying tDCS application. The functional imaging results of this case report highlight one possible mechanism that may have contributed to beneficial behavioral stimulation effects in previous clinical tDCS trials in aphasia. In the future, this approach will allow identifying distinct patterns of stimulation effects on neural processing in larger cohorts of patients. This may ultimately yield information about the variability of tDCS effects on brain functions in aphasia.