236 resultados para Mutation


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The T-box family transcription factor gene TBX20 acts in a conserved regulatory network, guiding heart formation and patterning in diverse species. Mouse Tbx20 is expressed in cardiac progenitor cells, differentiating cardiomyocytes, and developing valvular tissue, and its deletion or RNA interference-mediated knockdown is catastrophic for heart development. TBX20 interacts physically, functionally, and genetically with other cardiac transcription factors, including NKX2-5, GATA4, and TBX5, mutations of which cause congenital heart disease (CHD). Here, we report nonsense (Q195X) and missense (I152M) germline mutations within the T-box DNA-binding domain of human TBX20 that were associated with a family history of CHD and a complex spectrum of developmental anomalies, including defects in septation, chamber growth, and valvulogenesis. Biophysical characterization of wild-type and mutant proteins indicated how the missense mutation disrupts the structure and function of the TBX20 T-box. Dilated cardiomyopathy was a feature of the TBX20 mutant phenotype in humans and mice, suggesting that mutations in developmental transcription factors can provide a sensitized template for adult-onset heart disease. Our findings are the first to link TBX20 mutations to human pathology. They provide insights into how mutation of different genes in an interactive regulatory circuit lead to diverse clinical phenotypes, with implications for diagnosis, genetic screening, and patient follow-up.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Multiple sclerosis (MS) is a chronic neurological disease characterized by central nervous system (CNS) inflammation and demyelination. The C677T substitution variant in the methylenetetrahydrofolate reductase (MTHFR) gene has been associated with increased levels of circulating homocysteine and is a mild risk factor for vascular disease. Higher blood levels of homocysteine have also been reported in MS. Thus, the C677T mutation of the MTHFR gene may influence MS susceptibility. Noradrenaline, a neurotransmitter believed to play an immunosupressive role in neuroinflammatory disorders, is catabolized by catechol-O-methyl transferase (COMT). The COMT G158A substitution results in a three- to four-fold decreased activity of the COMT enzyme, which may influence CNS synaptic catecholamine breakdown and could also play a role in MS inflammation. We tested DNA from Australian MS patients and unaffected control subjects, matched for gender, age and ethnicity. Specifically, we genotyped the MTHFR C677T and the COMT G158A mutations. Genotype distributions showed that the homozygous mutant MTHFR genotype (T/T) and the COMT (H/H) genotype were slightly over-represented in the MS group (16% versus 11% and 24% versus 19%, respectively), but both variations failed to reach statistical significance (P=0.15 and P=0.32, respectively). Hence, results from the present study do not support a major role for either functional gene mutation in MS susceptibility.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Familial hemiplegic migraine is a severe, rare subtype of migraine. Gene mutations on chromosome 19 have been identified in the calcium channel, voltage-dependent, P/Q type, alpha-1A subunit gene (chromosome 19p13) for familial hemiplegic migraine. Recently a gene mutation (Serine-218-Leucine) for a dramatic syndrome associated with familial hemiplegic migraine, commonly named “migraine coma”, has implicated exon 5 of this gene. The occurrence of trivial head trauma, in such familial hemiplegic migraine patients, may also be complicated by severe, sometimes even fatal, cerebral edema and coma occurring after a lucid interval. Sporadic hemiplegic migraine shares a similar spectrum of clinical presentation and genetic heterogeneity. The case report presented in this article implicates the involvement of the Serine-218-Leucine mutation in the extremely rare disorder of minor head trauma–induced migraine coma. We conclude that the Serine-218-Leucine mutation in the calcium channel, voltage-dependent, P/Q type, alpha-1A subunit gene is involved in sporadic hemiplegic migraine, delayed cerebral edema and coma after minor head trauma.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Essential hypertension (EH) is a common, multifactorial disorder likely to be influenced by multiple genes of modest effect. The methylenetetrahydrofolate reductase (MTHFR) gene C677T mutation is functionally important, being strongly associated with reduced enzyme activity and increased plasma levels of homocysteine. Mild hyperhomocysteinemia is a known risk factor for cardiovascular disease (CVD) and hypothesised also to be involved in hypertension pathophysiology. The present study was performed to determine the prevalence of the 677T mutation in Australian Caucasian patients diagnosed with EH and to test whether the C677T variant is associated with the disorder. A case-control cohort, consisting of 250 EH patients and 250 age, sex and racially matched normotensive controls, were used for the association study. Comparison of C677T allele frequencies revealed a higher proportion of the mutant allele (T) in the EH group (40%) compared to unaffected controls (34%) (p=0.07). Furthermore, genotypic results indicated that the prevalence of the homozygous mutant genotype (T/T) in the affected group was higher than that of controls (14%:10%) (p=0.17). Interestingly, conditional logistic regression showed that the MTHFR C677T mutation conferred a mild, yet significant increase in risk of essential hypertension after adjusting for body mass index (odds ratio=1.57, 95% confidence interval: 1.04-2.37, p=0.03). These findings require further investigation in large independent samples, but suggest that essential hypertension, like CVD, may be mildly influenced by the MTHFR C677T variant.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Typical migraine is a complex neurological disorder comprised of two main subtypes: migraine with (MA) and without aura (MO). The disease etiology is still unclear, but family studies provide strong evidence that defective genes play an important role. Familial hemiplegic migraine (FHM) is a very rare and severe subtype of MA. It has been proposed that FHM and MA may have a similar genetic etiology. Therefore, genetic studies on FHM provide a useful model for investigating the more prevalent types of typical migraine. FHM in some families has been shown to be caused by mutations in a brain-specific P/Q-type calcium channel alpha1 subunit gene (CACNA1A) on chromosome 19p13. There has also been a report of a CACNA1A mutation being associated with MA in a patient from a family with predominant FHM. We have previously demonstrated suggestive linkage of typical migraine in a large Australian family to the FHM region on chromosome 19p13. These findings suggest that CACNA1A may also be implicated in the etiology of typical migraine in this pedigree. To investigate this possibility, we sequenced two patients carrying the critical susceptibility haplotype surrounding CACNA1A. No disease-causing mutations or polymorphisms were revealed in any of the 47 exons screened. To determine whether the CACNA1A gene was implicated in typical migraine susceptibility in the general Caucasian population, we also analyzed 82 independent pedigrees and a large case control group. We did not detect any linkage or association in these groups and conclude that if CACNA1A plays a role in typical migraine, it does not confer a major effect on the disease.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Migraine is a common genetically linked neurovascular disorder. Approximately ~12% of the Caucasian population are affected including 18% of adult women and 6% of adult men (1, 2). A notable female bias is observed in migraine prevalence studies with females affected ~3 times more than males and is credited to differences in hormone levels arising from reproductive achievements. Migraine is extremely debilitating with wide-ranging socioeconomic impact significantly affecting people's health and quality of life. A number of neurotransmitter systems have been implicated in migraine, the most studied include the serotonergic and dopaminergic systems. Extensive genetic research has been carried out to identify genetic variants that may alter the activity of a number of genes involved in synthesis and transport of neurotransmitters of these systems. The biology of the Glutamatergic system in migraine is the least studied however there is mounting evidence that its constituents could contribute to migraine. The discovery of antagonists that selectively block glutamate receptors has enabled studies on the physiologic role of glutamate, on one hand, and opened new perspectives pertaining to the potential therapeutic applications of glutamate receptor antagonists in diverse neurologic diseases. In this brief review, we discuss the biology of the Glutamatergic system in migraine outlining recent findings that support a role for altered Glutamatergic neurotransmission from biochemical and genetic studies in the manifestation of migraine and the implications of this on migraine treatment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cervical cancer is one of the world's major health issues. Despite many studies in this field, the carcinogenetic events of malignant conversion in cervical tumours have not been significantly characterised. The first aim of this project was to investigate the mutation status of the tumour suppressor gene- Phosphatase and Tension Homolog (PTEN)- in cervical cancer tissue. The second aim of this study was the analysis in the same cervical cancer tissue for aberrations in the mitochondrial electron transport chain subunit gene NDUFB8, which is localised to the same chromosomal contig as PTEN. The third aim was the evaluation of the potential therapeutic anti-cancer drug 2,4-Thiazolidinediones (TZDs) and its affect in regulating the PTEN protein in a cervical cancer cell line (HeLa). To approach the aims, paraffin-embedded cancerous cervical tissue and non-cancerous cervical tissue were obtained. DNA recovered from those tissues was then used to investigate the putative genomic changes regarding the NDUFB8 gene utilising SYBR Green I Real-Time PCR. The PTEN gene was studied via Dual-Labelled probe Real-Time PCR. To investigate the protein expression change of the PTEN protein, HeLa cells were firstly treated with different concentrations of 2,4-Thiazolidinediones and the level of PTEN protein expression was then observed utilising standard protein assays. Results indicated that there were putative copy-number changes between the cancerous cervical tissue and non-cancerous cervical tissue, with regard to the PTEN locus. This implies a potential gain of the PTEN gene in cancerous cervical tissue. With regards to normal cervical tissue versus cancerous cervical tissue no significant melting temperature differences were observed with the SYBR Green I Real-Time PCR in respect to the NDUFB8 gene. A putative up-regulation of PTEN protein was observed in TZD treated HeLa cells. © 2008 Springer Science+Business Media, LLC.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The incidence of Squamous Cell Carcinoma (SCG) is growing in certain populations to the extent that it is now the most common skin lesion in young men and women in high ultraviolet exposure regions such as Queensland. In terms of incidence up to 40% of the Australian population over 40 years of age is thought to possess the precancerous Solar Keratosis (SK) lesion and with a small, but significant, chance of progression into SCC, understanding the genetic events that play a role in this process is essential. The major aims of this study were to analyse whole blood derived samples for DNA aberrations in genes associated with tumour development and cellular maintenance, with the ultimate aim of identifying genes associated with non-melanoma skin cancer development. More specifically the first aim of this project was to analyse the SDHD and MMP12 genes via Dual-Labelled Probe Real-Time PCR for copy number aberrations in an affected Solar Keratosis and control cohort. It was found that 12 samples had identifiable copy-number aberrations in either the SDHD or MMP12 gene (this means that a genetic section of either of these two genes is aberrantly amplified or deleted), with five of the samples exhibiting aberrations in both genes. The significance of this study is the contribution to the knowledge of the genetic pathways that are malformed in the progression and development of the pre-cancerous skin lesion Solar Keratosis. © 2008 Springer Science+Business Media, LLC.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Migraine is a frequent familial disorder that, in common with most multifactorial disorders, has an unknown etiology. The authors identified several families with multiple individuals affected by typical migraine using a single set of diagnostic criteria and studied these families for cosegregation between the disorder and markers on chromosome 19, the location of a mutation that causes a rare form of familial hemiplegic migraine (FHM). One large tested family showed both cosegregation and significant allele sharing for markers situated within or adjacent to the FHM locus. Multipoint GENEHUNTER results indicated significant excess allele sharing across a 12.6- cM region containing the FHM Ca2+ channel gene, CACNL1A4 (maximum nonparametric linkage Z score = 6.64, p = 0.0026), with a maximum parametric lod score of 1.92 obtained for a (CAG)(n) triplet repeat polymorphism situated in exon 47 of this gene. The CAG expansion did not, however, appear to be the cause of migraine in this pedigree. Other tested families showed neither cosegregation nor excess allele sharing to chromosome 19 markers. HOMOG analysis indicated heterogeneity, generating a maximum HLOD score of 3.6. It was concluded that Chr19 mutations either in the CACNL1A4 gene or a closely linked gene are implicated in some pedigrees with familial typical migraine, and that the disorder is genetically heterogeneous.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

1. Previous glucagon receptor gene (GCGR) studies have shown a Gly40Ser mutation to be more prevalent in essential hypertension and to affect glucagon binding affinity to its receptor. An Alu-repeat poly(A) polymorphism colocalized to GCGR was used in the present study to test for association and linkage in hypertension as well as association in obesity development. 2. Using a cross-sectional approach, 85 hypertensives and 95 normotensives were genotyped using polymerase chain reaction primers flanking the Alu-repeat. Both hypertensive and normotensive populations were subdivided into lean and obese categories based on body mass index (BMI) to determine involvement of this variant in obesity. For the linkage study, 89 Australian Caucasian hypertension affected sibships (174 sibpairs) were genotyped and the results were analysed using GENE-HUNTER, Mapmaker Sibs, ERPA and SPLINK (all freely available from http://linlkage.rockefeller. edu/soft/list.html). 3. Cross-sectional results for both hypertension and obesity were analysed using Chi-squared and Monte Carlo analyses. Results did not show an association of this variant with either hypertension (χ2 = 6.9, P = 0.14; Monte Carlo χ2 = 7.0, P = 0.11; n = 5000) or obesity (χ2 = 3.3, P = 0.35; Monte Carlo χ2 = 3.26, P = 0.34; n = 5000). In addition, results from the linkage study using hypertensive sib-pairs did not indicate linkage of the poly(A) repent with hypertension. Hence, results did not indicate a role far the Alu-repeat in either hypertension or obesity. However, as the heterozygosity of this poly(A) repeat is low (35%), a larger number of hypertensive sib-pairs may be required to draw definitive conclusions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Obese (BMI ≥ 26 kg/m 2; n = 51) and lean (BMI <26 kg/m 2; n = 61) Caucasian patients with severe, familial essential hypertension, were compared with respect to genotype and allele frequencies of a HincII RFLP of the low density lipoprotein receptor gene (LDLR). A similar analysis was performed in obese (n = 28) and lean (n = 68) normotensives. A significant association of the C allele of the T→C variant responsible for this RFLP was seen with obesity (χ 2 = 4.6, P = 0.029) in the hypertensive, but not in the normotensive, group (odds ratio = 3.0 for the CC genotype and 2.7 for CT). Furthermore, BMI tracked with genotypes of this allele in the hypertensives (P = 0.046). No significant genotypic relationship was apparent for plasma lipids. Significant linkage disequilibrium was, moreover, noted between the HincII RFLP and an ApaLI RFLP (χ 2 = 33, P<0.0005) that has previously shown even stronger association with obesity (odds ratio 19.6 for cases homozygous for the susceptibility allele and 15.2 for het-erozygotes). The present study therefore adds to our previous evidence implicating LDLR as a locus for obesity in patients with essential hypertension.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We characterized the mutational landscape of melanoma, the form of skin cancer with the highest mortality rate, by sequencing the exomes of 147 melanomas. Sun-exposed melanomas had markedly more ultraviolet (UV)-like C>T somatic mutations compared to sun-shielded acral, mucosal and uveal melanomas. Among the newly identified cancer genes was PPP6C, encoding a serine/threonine phosphatase, which harbored mutations that clustered in the active site in 12% of sun-exposed melanomas, exclusively in tumors with mutations in BRAF or NRAS. Notably, we identified a recurrent UV-signature, an activating mutation in RAC1 in 9.2% of sun-exposed melanomas. This activating mutation, the third most frequent in our cohort of sun-exposed melanoma after those of BRAF and NRAS, changes Pro29 to serine (RAC1P29S) in the highly conserved switch I domain. Crystal structures, and biochemical and functional studies of RAC1P29S showed that the alteration releases the conformational restraint conferred by the conserved proline, causes an increased binding of the protein to downstream effectors, and promotes melanocyte proliferation and migration. These findings raise the possibility that pharmacological inhibition of downstream effectors of RAC1 signaling could be of therapeutic benefit.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

High density SNP arrays can be used to identify DNA copy number changes in tumors such as homozygous deletions of tumor suppressor genes and focal amplifications of oncogenes. Illumina Human CNV370 Bead chip arrays were used to assess the genome for unbalanced chromosomal events occurring in 39 cell lines derived from stage III metastatic melanomas. A number of genes previously recognized to have an important role in the development and progression of melanoma were identified including homozygous deletions of CDKN2A (13 of 39 samples), CDKN2B (10 of 39), PTEN (3 of 39), PTPRD (3 of 39), TP53 (1 of 39), and amplifications of CCND1 (2 of 39), MITF (2 of 39), MDM2 (1 of 39), and NRAS (1 of 39). In addition, a number of focal homozygous deletions potentially targeting novel melanoma tumor suppressor genes were identified. Because of their likely functional significance for melanoma progression, FAS, CH25H, BMPR1A, ACTA2, and TFG were investigated in a larger cohort of melanomas through sequencing. Nonsynonymous mutations were identified in BMPR1A (1 of 43), ACTA2 (3 of 43), and TFG (5 of 103). A number of potentially important mutation events occurred in TFG including the identification of a mini mutation ‘‘hotspot’’ at amino acid residue 380 (P380S and P380L) and the presence of multiple mutations in two melanomas. Mutations in TFG may have important clinical relevance for current therapeutic strategies to treat metastatic melanoma.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Melanoma has historically been refractive to traditional therapeutic approaches. As such, the development of novel drug strategies has been needed to improve rates of overall survival in patients with melanoma, particularly those with late stage or disseminated disease. Recent success with molecularly based targeted drugs, such as Vemurafenib in BRAF-mutant melanomas, has now made “personalized medicine” a reality within some oncology clinics. In this sense, tailored drugs can be administered to patients according to their tumor “mutation profiles.” The success of these drug strategies, in part, can be attributed to the identification of the genetic mechanisms responsible for the development and progression of metastatic melanoma. Recently, the advances in sequencing technology have allowed for comprehensive mutation analysis of tumors and have led to the identification of a number of genes involved in the etiology of metastatic melanoma. As the methodology and costs associated with next-generation sequencing continue to improve, this technology will be rapidly adopted into routine clinical oncology practices and will significantly impact on personalized therapy. This review summarizes current and emerging molecular targets in metastatic melanoma, discusses the potential application of next-generation sequencing within the paradigm of personalized medicine, and describes the current limitations for the adoption of this technology within the clinic.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Maternally inherited diabetes and deafness (MIDD) is an autosomal dominant inherited syndrome caused by the mitochondrial DNA (mtDNA) nucleotide mutation A3243G. It affects various organs including the eye with external ophthalmoparesis, ptosis, and bilateral macular pattern dystrophy.1, 2 The prevalence of retinal involvement in MIDD is high, with 50% to 85% of patients exhibiting some macular changes.1 Those changes, however, can vary between patients and within families dramatically based on the percentage of retinal mtDNA mutations, making it difficult to give predictions on an individual’s visual prognosis...