331 resultados para Multiple imputations
Resumo:
We have previously reported the use of a novel mini-sequencing protocol for detection of the factor V Leiden variant, the first nucleotide change (FNC) technology. This technology is based on a single nucleotide extension of a primer, which is hybridized immediately adjacent to the site of mutation. The extended nucleotide that carries a reporter molecule (fluorescein) has the power to discriminate the genotype at the site of mutation. More recently, the prothrombin 20210 and thermolabile methylene tetrahydrofolate reductase (MTHFR) 677 variants have been identified as possible risk factors associated with thrombophilia. This study describes the use of the FNC technology in a combined assay to detect factor V, prothrombin and MTHFR variants in a population of Australian blood donors, and describes the objective numerical methodology used to determine genotype cut-off values for each genetic variation. Using FNC to test 500 normal blood donors, the incidence of Factor V Leiden was 3.6% (all heterozygous), that of prothrombin 20210 was 2.8% (all heterozygous) and that of MTHFR was 10% (homozygous). The combined FNC technology offers a simple, rapid, automatable DNA-based test for the detection of these three important mutations that are associated with familial thrombophilia. (C) 2000 Lippincott Williams and Wilkins.
Resumo:
Aim. This paper is a report of a study to explore rural nurses' experiences of mentoring. Background. Mentoring has recently been proposed by governments, advocates and academics as a solution to the problem for retaining rural nurses in the Australian workforce. Action in the form of mentor development workshops has changed the way that some rural nurses now construct supportive relationships as mentoring. Method. A grounded theory design was used with nine rural nurses. Eleven semi-structured interviews were conducted in various states of Australia during 2004-2005. Situational analysis mapping techniques and frame analysis were used in combination with concurrent data generation and analysis and theoretical sampling. Findings. Experienced rural nurses cultivate novices through supportive mentoring relationships. The impetus for such relationships comes from their own histories of living and working in the same community, and this was termed 'live my work'. Rural nurses use multiple perspectives of self in order to manage their interactions with others in their roles as community members, consumers of healthcare services and nurses. Personal strategies adapted to local context constitute the skills that experienced rural nurses pass-on to neophyte rural nurses through mentoring, while at the same time protecting them through troubleshooting and translating local cultural norms. Conclusion. Living and working in the same community creates a set of complex challenges for novice rural nurses that are better faced with a mentor in place. Thus, mentoring has become an integral part of experienced rural nurses' practice to promote staff retention. © 2007 The Authors.
Resumo:
Recent research on multiple kernel learning has lead to a number of approaches for combining kernels in regularized risk minimization. The proposed approaches include different formulations of objectives and varying regularization strategies. In this paper we present a unifying optimization criterion for multiple kernel learning and show how existing formulations are subsumed as special cases. We also derive the criterion’s dual representation, which is suitable for general smooth optimization algorithms. Finally, we evaluate multiple kernel learning in this framework analytically using a Rademacher complexity bound on the generalization error and empirically in a set of experiments.
Resumo:
Recent research on multiple kernel learning has lead to a number of approaches for combining kernels in regularized risk minimization. The proposed approaches include different formulations of objectives and varying regularization strategies. In this paper we present a unifying general optimization criterion for multiple kernel learning and show how existing formulations are subsumed as special cases. We also derive the criterion's dual representation, which is suitable for general smooth optimization algorithms. Finally, we evaluate multiple kernel learning in this framework analytically using a Rademacher complexity bound on the generalization error and empirically in a set of experiments.
Resumo:
In cloud computing, resource allocation and scheduling of multiple composite web services is an important and challenging problem. This is especially so in a hybrid cloud where there may be some low-cost resources available from private clouds and some high-cost resources from public clouds. Meeting this challenge involves two classical computational problems: one is assigning resources to each of the tasks in the composite web services; the other is scheduling the allocated resources when each resource may be used by multiple tasks at different points of time. In addition, Quality-of-Service (QoS) issues, such as execution time and running costs, must be considered in the resource allocation and scheduling problem. Here we present a Cooperative Coevolutionary Genetic Algorithm (CCGA) to solve the deadline-constrained resource allocation and scheduling problem for multiple composite web services. Experimental results show that our CCGA is both efficient and scalable.
Resumo:
While a number of factors have been highlighted in the innovation adoption literature, little is known about whether different factors are related to innovation adoption in differently-sized firms. We used preliminary case studies of small, medium and large firms to ground our hypotheses, which were then tested using a survey of 94 firms. We found that external stakeholder pressure and non-financial readiness were related to innovation adoption in SMEs; but that for large firms, adoption was related to the opportunity to innovate. It may be that the difficulties of adopting innovations, including both the financial cost and the effort involved, are too great for SMEs to overcome unless there is either a compelling need (external pressure) or enough in-house capability (non-financial readiness). This suggests that SMEs are more likely to have innovation “pushed” onto them while large firms are more likely to “pull” innovations when they have the opportunity.