361 resultados para Motor sports events
Resumo:
This paper presents a fault diagnosis method based on adaptive neuro-fuzzy inference system (ANFIS) in combination with decision trees. Classification and regression tree (CART) which is one of the decision tree methods is used as a feature selection procedure to select pertinent features from data set. The crisp rules obtained from the decision tree are then converted to fuzzy if-then rules that are employed to identify the structure of ANFIS classifier. The hybrid of back-propagation and least squares algorithm are utilized to tune the parameters of the membership functions. In order to evaluate the proposed algorithm, the data sets obtained from vibration signals and current signals of the induction motors are used. The results indicate that the CART–ANFIS model has potential for fault diagnosis of induction motors.
Resumo:
Technique and physical contributions to ball delivery speed in fast bowling have been popular research topics in sports science. However, a common limiting factor of this work is the level of expertise of participants and lack of within bowler investigations (Salter et al., 2007). The relationship between technique, anthropometry and ball speed has not been comprehensively investigated among elite fast bowlers. The purpose of this study was to examine the relationship between technique, anthropometric variables and ball speed using both within- and betweenbowler analyses in a cross section of the Cricket Australia high performance pace pathway.
Resumo:
The emergence of Twenty20 cricket at the elite level has been marketed on the excitement of the big hitter, where it seems that winning is a result of the muscular batter hitting boundaries at will. This version of the game has captured the imagination of many young players who all want to score runs with “big hits”. However, in junior cricket, boundary hitting is often more difficult due to size limitations of children and games played on outfields where the ball does not travel quickly. As a result, winning is often achieved via a less spectacular route – by scoring more singles than your opponents. However, most standard coaching texts only describe how to play boundary scoring shots (e.g. the drives, pulls, cuts and sweeps) and defensive shots to protect the wicket. Learning to bat appears to have been reduced to extremes of force production, i.e. maximal force production to hit boundaries or minimal force production to stop the ball from hitting the wicket. Initially, this is not a problem because the typical innings of a young player (<12 years) would be based on the concept of “block” or “bash” – they “block” the good balls and “bash” the short balls. This approach works because there are many opportunities to hit boundaries off the numerous inaccurate deliveries of novice bowlers. Most runs are scored behind the wicket by using the pace of the bowler’s delivery to re-direct the ball, because the intrinsic dynamics (i.e. lack of strength) of most children means that they can only create sufficient power by playing shots where the whole body can contribute to force production. This method works well until the novice player comes up against more accurate bowling when they find they have no way of scoring runs. Once batters begin to face “good” bowlers, batters have to learn to score runs via singles. In cricket coaching manuals (e.g. ECB, n.d), running between the wickets is treated as a separate task to batting, and the “basics” of running, such as how to “back- up”, carry the bat, calling and turning and sliding the bat into the crease are “drilled” into players. This task decomposition strategy focussing on techniques is a common approach to skill acquisition in many highly traditional sports, typified in cricket by activities where players hit balls off tees and receive “throw-downs” from coaches. However, the relative usefulness of these approaches in the acquisition of sporting skills is increasingly being questioned (Pinder, Renshaw & Davids, 2009). We will discuss why this is the case in the next section.
Resumo:
The use of bowling machines is common practice in cricket. In an ideal world all batters would face real bowlers in practice sessions, but this is not always possible, for many reasons. The clear advantage of using bowling machines is that they alleviate the workload required from bowlers (Dennis, Finch & Farhart, 2005) and provide relatively consistent and accurate ball delivery which may not be otherwise available to many young batters. Anecdotal evidence suggests that many, if not most of the world’s greatest players use these methods within their training schedules. For example, Australian internationals, Michael Hussey and Matthew Hayden extensively used bowling machines (Hussey & Sygall, 2007). Bowling machines enable batsmen to practice for long periods, developing their endurance and concentration. However, despite these obvious benefits, in recent times the use of bowling machines has been questioned by sport scientists, coaches, ex- players and commentators. For example, Hussey’s batting coach comments “…we never went near a bowling machine in [Michael’s] first couple of years, I think there’s something to that …” (Hussey & Sygall, 2007, p. 119). This chapter will discuss the efficacy of using bowling machines with reference to research findings, before reporting new evidence that provides support for an alternative, innovative and possibly more representative practice design. Finally, the chapter will provide advice for coaches on the implications of this research, including a case study approach to demonstrate the practical use of such a design.
Resumo:
In team sports such as rugby union, a myriad of decisions and actions occur within the boundaries that compose the performance perceptual- motor workspace. The way that these performance boundaries constrain decision making and action has recently interested researchers and has involved developing an understanding of the concept of constraints. Considering team sports as complex dynamical systems, signifies that they are composed of multiple, independent agents (i.e. individual players) whose interactions are highly integrated. This level of complexity is characterized by the multiple ways that players in a rugby field can interact. It affords the emergence of rich patterns of behaviour, such as rucks, mauls, and collective tactical actions that emerge due to players’ adjustments to dynamically varying competition environments. During performance, the decisions and actions of each player are constrained by multiple causes (e.g. technical and tactical skills, emotional states, plans, thoughts, etc.) that generate multiple effects (e.g. to run or pass, to move forward to tackle or maintain position and drive the opponent to the line), a prime feature in a complex systems approach to team games performance (Bar- Yam, 2004). To establish a bridge between the complexity sciences and learning design in team sports like rugby union, the aim of practice sessions is to prepare players to pick up and explore the information available in the multiple constraints (i.e. the causes) that influence performance. Therefore, learning design in training sessions should be soundly based on the interactions amongst players (i.e.teammates and opponents) that will occur in rugby matches. To improve individual and collective decision making in rugby union, Passos and colleagues proposed in previous work a performer- environment interaction- based approach rather than a traditional performer- based approach (Passos, Araújo, Davids & Shuttleworth, 2008).
Resumo:
Overweight and obesity are a significant cause of poor health worldwide, particularly in conjunction with low levels of physical activity (PA). PA is health-protective and essential for the physical growth and development of children, promoting physical and psychological health while simultaneously increasing the probability of remaining active as an adult. However, many obese children and adolescents have a unique set of physiological, biomechanical, and neuromuscular barriers to PA that they must overcome. It is essential to understand the influence of these barriers on an obese child's motivation in order to exercise and tailor exercise programs to the special needs of this population. Chapter Outline • Introduction • Defining Physical Activity, Exercise, and Physical Fitness • Physical Activity, Physical Fitness, And Motor Competence In Obese Children • Physical Activity and Obesity in Children • Physical Fitness in Obese Children • Balance and Gait in Obese Children • Motor Competence in Obese Children • Physical Activity Guidelines for Obese Children • Clinical Assessment of the Obese Child • Physical Activity Characteristics: Mode • Physical Activity Characteristics: Intensity • Physical Activity Characteristics: Frequency • Physical Activity Characteristics: Duration • Conclusion