368 resultados para Molecular Marker


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Determining the temporal scale of biological evolution has traditionally been the preserve of paleontology, with the timing of species originations and major diversifications all being read from the fossil record. However, the ages of the earliest (correctly identified) records will underestimate actual origins due to the incomplete nature of the fossil record and the necessity for lineages to have evolved sufficiently divergent morphologies in order to be distinguished. The possibility of inferring divergence times more accurately has been promoted by the idea that the accumulation of genetic change between modern lineages can be used as a molecular clock (Zuckerkandl and Pauling, 1965). In practice, though, molecular dates have often been so old as to be incongruent even with liberal readings of the fossil record. Prominent examples include inferred diversifications of metazoan phyla hundreds of millions of years before their Cambrian fossil record appearances (e.g., Nei et al., 2001) and a basal split between modern birds (Neoaves) that is almost double the age of their earliest recognizable fossils (e.g., Cooper and Penny, 1997).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Studies of molecular evolutionary rates have yielded a wide range of rate estimates for various genes and taxa. Recent studies based on population-level and pedigree data have produced remarkably high estimates of mutation rate, which strongly contrast with substitution rates inferred in phylogenetic (species-level) studies. Using Bayesian analysis with a relaxed-clock model, we estimated rates for three groups of mitochondrial data: avian protein-coding genes, primate protein-coding genes, and primate d-loop sequences. In all three cases, we found a measurable transition between the high, short-term (<1–2 Myr) mutation rate and the low, long-term substitution rate. The relationship between the age of the calibration and the rate of change can be described by a vertically translated exponential decay curve, which may be used for correcting molecular date estimates. The phylogenetic substitution rates in mitochondria are approximately 0.5% per million years for avian protein-coding sequences and 1.5% per million years for primate protein-coding and d-loop sequences. Further analyses showed that purifying selection offers the most convincing explanation for the observed relationship between the estimated rate and the depth of the calibration. We rule out the possibility that it is a spurious result arising from sequence errors, and find it unlikely that the apparent decline in rates over time is caused by mutational saturation. Using a rate curve estimated from the d-loop data, several dates for last common ancestors were calculated: modern humans and Neandertals (354 ka; 222–705 ka), Neandertals (108 ka; 70–156 ka), and modern humans (76 ka; 47–110 ka). If the rate curve for a particular taxonomic group can be accurately estimated, it can be a useful tool for correcting divergence date estimates by taking the rate decay into account. Our results show that it is invalid to extrapolate molecular rates of change across different evolutionary timescales, which has important consequences for studies of populations, domestication, conservation genetics, and human evolution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Long-term changes in the genetic composition of a population occur by the fixation of new mutations, a process known as substitution. The rate at which mutations arise in a population and the rate at which they are fixed are expected to be equal under neutral conditions (Kimura, 1968). Between the appearance of a new mutation and its eventual fate of fixation or loss, there will be a period in which it exists as a transient polymorphism in the population (Kimura and Ohta, 1971). If the majority of mutations are deleterious (and nonlethal), the fixation probabilities of these transient polymorphisms are reduced and the mutation rate will exceed the substitution rate (Kimura, 1983). Consequently, different apparent rates may be observed on different time scales of the molecular evolutionary process (Penny, 2005; Penny and Holmes, 2001). The substitution rate of the mitochondrial protein-coding genes of birds and mammals has been traditionally recognized to be about 0.01 substitutions/site/million years (Myr) (Brown et al., 1979; Ho, 2007; Irwin et al., 1991; Shields and Wilson, 1987), with the noncoding D-loop evolving several times more quickly (e.g., Pesole et al., 1992; Quinn, 1992). Over the past decade, there has been mounting evidence that instantaneous mutation rates substantially exceed substitution rates, in a range of organisms (e.g., Denver et al., 2000; Howell et al., 2003; Lambert et al., 2002; Mao et al., 2006; Mumm et al., 1997; Parsons et al., 1997; Santos et al., 2005). The immediate reaction to the first of these findings was that the polymorphisms generated by the elevated mutation rate are short-lived, perhaps extending back only a few hundred years (Gibbons, 1998; Macaulay et al., 1997). That is, purifying selection was thought to remove these polymorphisms very rapidly.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Despite recent methodological advances in inferring the time-scale of biological evolution from molecular data, the fundamental question of whether our substitution models are sufficiently well specified to accurately estimate branch-lengths has received little attention. I examine this implicit assumption of all molecular dating methods, on a vertebrate mitochondrial protein-coding dataset. Comparison with analyses in which the data are RY-coded (AG → R; CT → Y) suggests that even rates-across-sites maximum likelihood greatly under-compensates for multiple substitutions among the standard (ACGT) NT-coded data, which has been subject to greater phylogenetic signal erosion. Accordingly, the fossil record indicates that branch-lengths inferred from the NT-coded data translate into divergence time overestimates when calibrated from deeper in the tree. Intriguingly, RY-coding led to the opposite result. The underlying NT and RY substitution model misspecifications likely relate respectively to “hidden” rate heterogeneity and changes in substitution processes across the tree, for which I provide simulated examples. Given the magnitude of the inferred molecular dating errors, branch-length estimation biases may partly explain current conflicts with some palaeontological dating estimates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mesenchymal stem cells (MSCs) are undifferentiated, multi-potent stem cells with the ability to renew. They can differentiate into many types of terminal cells, such as osteoblasts, chondrocytes, adipocytes, myocytes, and neurons. These cells have been applied in tissue engineering as the main cell type to regenerate new tissues. However, a number of issues remain concerning the use of MSCs, such as cell surface markers, the determining factors responsible for their differentiation to terminal cells, and the mechanisms whereby growth factors stimulate MSCs. In this chapter, we will discuss how proteomic techniques have contributed to our current knowledge and how they can be used to address issues currently facing MSC research. The application of proteomics has led to the identification of a special pattern of cell surface protein expression of MSCs. The technique has also contributed to the study of a regulatory network of MSC differentiation to terminal differentiated cells, including osteocytes, chondrocytes, adipocytes, neurons, cardiomyocytes, hepatocytes, and pancreatic islet cells. It has also helped elucidate mechanisms for growth factor–stimulated differentiation of MSCs. Proteomics can, however, not reveal the accurate role of a special pathway and must therefore be combined with other approaches for this purpose. A new generation of proteomic techniques have recently been developed, which will enable a more comprehensive study of MSCs. Keywords

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To date, a molecular phylogenetic approach has not been used to investigate the evolutionary structure of Trogoderma and closely related genera. Using two mitochondrial genes, Cytochrome Oxidase I and Cytochrome B, and the nuclear gene, 18S, the reported polyphyletic positioning of Trogoderma was examined. Paraphyly in Trogoderma was observed, with one Australian Trogoderma species reconciled as sister to all Dermestidae and the Anthrenocerus genus deeply nested within the Australian Trogoderma clade. In addition, time to most recent common ancestor for a number of Dermestidae was calculated. Based on these estimations, the Dermestidae origin exceeded 175 million years, placing the origins of this family in Pangaea.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mechanical vibration properties of single actin filaments from 50 to 288 nm are investigated by the molecular dynamics simulation in this study. The natural frequencies obtained from the molecular simulations agree with those obtained from the analytical solution of the equivalent Euler–Bernoulli beam model. Through the convergence study of the mechanical properties with respect to the filament length, it was found that the Euler–Bernoulli beam model can only be reliably used when the single actin filament is of the order of hundreds of nanometre scale. This molecular investigation not only provides the evidence for the use of the continuum beam model in characterising the mechanical properties of single actin filaments, but also clarifies the criteria for the effective use of the Euler–Bernoulli beam model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mineral svanbergite SrAl 3(PO 4,SO 4) 2(OH) 6 is a hydroxy phosphate-sulphate mineral belonging to the beudantite subgroup of alunites and has been characterised by vibrational spectroscopy. Bands at various wavenumbers were assigned to the different vibrational modes of svanbergite, which were then associated with the structure of the mineral. Bands were primarily assigned to phosphate and sulphate stretching and bending modes. Two symmetric stretching modes for both phosphate and sulphate supported the concept of non-equivalent phosphate and sulphate units in the mineral structure. Bands in the OH stretching region enabled hydrogen bond distances to be calculated. Comparison of the hydrogen bond distances and the calculated hydrogen bond distances from the structure models indicates that hydrogen bonding in svanbergite occurs between the two OH units rather than OH to SO42- units.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With well over 700 species, the Tribe Dacini is one of the most species-rich clades within the dipteran family Tephritidae, the true fruit flies. Nearly all Dacini belong to one of two very large genera, Dacus Fabricius and Bactrocera Macquart. The distribution of the genera overlap in or around the Indian subcontinent, but the greatest diversity of Dacus is in Africa and the greatest diversity of Bactrocera is in south-east Asia and the Pacific. The monophyly of these two genera has not been rigorously established, with previous phylogenies only including a small number of species and always heavily biased to one genus over the other. Moreover, the subgeneric taxonomy within both genera is complex and the monophyly of many subgenera has not been explicitly tested. Previous hypotheses about the biogeography of the Dacini based on morphological reviews and current distributions of taxa have invoked an out-of-India hypothesis; however this has not been tested in a phylogenetic framework. We attempted to resolve these issues with a dated, molecular phylogeny of 125 Dacini species generated using 16S, COI, COII and white eye genes. The phylogeny shows that Bactrocera is not monophyletic, but rather consists of two major clades: Bactrocera s.s. and the ‘Zeugodacus group of subgenera’ (a recognised, but informal taxonomic grouping of 15 Bactrocera subgenera). This ‘Zeugodacus’ clade is the sister group to Dacus, not Bactrocera and, based on current distributions, split from Dacus before that genus moved into Africa. We recommend that taxonomic consideration be given to raising Zeugodacus to genus level. Supportive of predictions following from the out-of-India hypothesis, the first common ancestor of the Dacini arose in the mid-Cretaceous approximately 80 mya. Major divergence events occurred during the Indian rafting period and diversification of Bactrocera apparently did not begin until after India docked with Eurasia (50–35 mya). In contrast, diversification in Dacus, at approximately 65 mya, apparently began much earlier than predicted by the out-of-India hypothesis, suggesting that, if the Dacini arose on the Indian plate, then ancestral Dacus may have left the plate in the mid to late Cretaceous via the well documented India–Madagascar–Africa migration route. We conclude that the phylogeny does not disprove the predictions of an out-of-India hypothesis for the Dacini, although modification of the original hypothesis is required.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Despite their ecological significance as decomposers and their evolutionary significance as the most speciose eusocial insect group outside the Hymenoptera, termite (Blattodea: Termitoidae or Isoptera) evolutionary relationships have yet to be well resolved. Previous morphological and molecular analyses strongly conflict at the family level and are marked by poor support for backbone nodes. A mitochondrial (mt) genome phylogeny of termites was produced to test relationships between the recognised termite families, improve nodal support and test the phylogenetic utility of rare genomic changes found in the termite mt genome. Complete mt genomes were sequenced for 7 of the 9 extant termite families with additional representatives of each of the two most speciose families Rhinotermitidae (3 of 7 subfamilies) and Termitidae (3 of 8 subfamilies). The mt genome of the well supported sister group of termites, the subsocial cockroach Cryptocercus, was also sequenced. A highly supported tree of termite relationships was produced by all analytical methods and data treatment approaches, however the relationship of the termites + Cryptocercus clade to other cockroach lineages was highly affected by the strong nucleotide compositional bias found in termites relative to other dictyopterans. The phylogeny supports previously proposed suprafamilial termite lineages, the Euisoptera and Neoisoptera, a later derived Kalotermitidae as sister group of the Neoisoptera and a monophyletic clade of dampwood (Stolotermitidae, Archotermopsidae) and harvester termites (Hodotermitidae). In contrast to previous termite phylogenetic studies, nodal supports were very high for family-level relationships within termites. Two rare genomic changes in the mt genome control region were found to be molecular synapomorphies for major clades. An elongated stem-loop structure defined the clade Polyphagidae + (Cryptocercus + termites), and a further series of compensatory base changes in this stem loop is synapomorphic for the Neoisoptera. The complicated repeat structures first identified in Reticulitermes, composed of short (A-type) and long (B-type repeats) defines the clade Heterotermitinae + Termitidae, while the secondary loss of A-type repeats is synapomorphic for the non-macrotermitine Termitidae.