132 resultados para Model Driven Architecture (MDA)
Resumo:
This chapter provides an introduction to the use of pedagogical patterns in capturing and sharing educational design experience. In higher education, helping students to learn to engage in productive reflection presents a complex set of challenges. Delicate balances must be found: too little structure and support for students’ reflective work can leave them floundering; too much, and some will remain dependent. Moreover, this is a dynamic teaching problem – scaffolding needs to be adjusted as students develop confidence and capability, which they will do at different rates. The model presented in this chapter embraces the three main elements that teachers can legitimately design, or help set in place, to support their students’ reflective activity: good tasks, the right tools, and appropriate divisions of labour. It delineates a complex, shifting architecture of tasks, tools and people, activities and outcomes associated with reflective learning. It shows how the designable elements of this complex mix can be described in patterns and pattern languages, which then become design resources for teachers’ own action, reflection and professional development.
Resumo:
Introduction Hydrogels prepared from poly(ethylene glycol) (PEG) and maleimide-functionalized heparin provide a potential matrix for use in developing three dimensional (3D) models. We have previously demonstrated that these hydrogels support the cultivation of human umbilical vein endothelial cells (HUVECs) (1). We extend this body of work to study the ability to create an extracellular matrix (ECM)-like model to study breast and prostate cancer cell growth in 3D. Also, we investigate the ability to produce a tri-culture mimicking tumour angiogenesis with cancer spheroids, HUVECs and mesenchymal stem cells (MSC). Materials and Methods The breast cancer cell lines, MCF-7 and MDA-MB-231, and prostate cancer cell lines, LNCaP and PC3, were seeded into starPEG-heparin hydrogels and grown for 14 Days to analyse the effects of varying hydrogel stiffness on spheroid development. Resulting hydrogel constructs were analyzed via Alamar Blue assays, light microscopy, and immunofluorescence staining for cytokeratin 8/18, Ki67 and E-Cadherin. Cancer cell lines were then pre-grown in hydrogels for 5-7 days and then re-seeded into starPEG-heparin hydrogels functionalised with RGD, SDF-1, bFGF and VEGF as spheroids with HUVECs and MSC and grown for 14 days as a tri-culture in Endothelial Cell Growth Medium (ECGM; Promocell). Cell lines were also seeded as a single cell suspension into the functionalised tri-culture system. Cultures were fixed in 4% paraformaldehyde and analysed via immunostaining for Von Willebrand Factor and CD31, as well as the above mentioned markers, and observed using confocal microscopy. Results Cultures prepared in MMP-cleavable starPEG-heparin hydrogels display spheroid formation in contrast to adherent growth on tissue culture plastic. Small differences were visualised in cancer spheroid growth between different gel stiffness across the range of cell lines. Cancer cell lines were able to be co-cultivated with HUVECs and MSC. HUVEC tube formation and cancer line spheroid formation occured after 3-4 days. Interaction was visualised between tumours and HUVECs via confocal microscopy. Slightly increased interaction was seen between cancer tumours and micro-vascular tubes when seeded as single cells compared with the pre-formed spheroid approach. Further studies intend to utilise cytokine gradients to further optimise the ECM environment of in situ tumour angiogenesis. Discussion and Conclusions Our results confirm the suitability of hydrogels constructed from starPEG-heparin for HUVECs and MSC co-cultivation with cancer cell lines to study cell-cell and cell-matrix interactions in a 3D environment. This represents a step forward in the development of 3D culture models to study the pathomechanisms of breast and prostate cancer. References 1. Tsurkan MV, Chwalek K, Prokoph S, Zieris A, Levental KR, Freudenberg U, Werner C. Advanced Materials. 25, 2606-10, 2013. Disclosures The authors declare no conflicts of interest
Resumo:
The development and maintenance of large and complex ontologies are often time-consuming and error-prone. Thus, automated ontology learning and revision have attracted intensive research interest. In data-centric applications where ontologies are designed or automatically learnt from the data, when new data instances are added that contradict to the ontology, it is often desirable to incrementally revise the ontology according to the added data. This problem can be intuitively formulated as the problem of revising a TBox by an ABox. In this paper we introduce a model-theoretic approach to such an ontology revision problem by using a novel alternative semantic characterisation of DL-Lite ontologies. We show some desired properties for our ontology revision. We have also developed an algorithm for reasoning with the ontology revision without computing the revision result. The algorithm is efficient as its computational complexity is in coNP in the worst case and in PTIME when the size of the new data is bounded.
Resumo:
Most previous work on artificial curiosity (AC) and intrinsic motivation focuses on basic concepts and theory. Experimental results are generally limited to toy scenarios, such as navigation in a simulated maze, or control of a simple mechanical system with one or two degrees of freedom. To study AC in a more realistic setting, we embody a curious agent in the complex iCub humanoid robot. Our novel reinforcement learning (RL) framework consists of a state-of-the-art, low-level, reactive control layer, which controls the iCub while respecting constraints, and a high-level curious agent, which explores the iCub's state-action space through information gain maximization, learning a world model from experience, controlling the actual iCub hardware in real-time. To the best of our knowledge, this is the first ever embodied, curious agent for real-time motion planning on a humanoid. We demonstrate that it can learn compact Markov models to represent large regions of the iCub's configuration space, and that the iCub explores intelligently, showing interest in its physical constraints as well as in objects it finds in its environment.
Resumo:
Decision-making is such an integral aspect in health care routine that the ability to make the right decisions at crucial moments can lead to patient health improvements. Evidence-based practice, the paradigm used to make those informed decisions, relies on the use of current best evidence from systematic research such as randomized controlled trials. Limitations of the outcomes from randomized controlled trials (RCT), such as “quantity” and “quality” of evidence generated, has lowered healthcare professionals’ confidence in using EBP. An alternate paradigm of Practice-Based Evidence has evolved with the key being evidence drawn from practice settings. Through the use of health information technology, electronic health records (EHR) capture relevant clinical practice “evidence”. A data-driven approach is proposed to capitalize on the benefits of EHR. The issues of data privacy, security and integrity are diminished by an information accountability concept. Data warehouse architecture completes the data-driven approach by integrating health data from multi-source systems, unique within the healthcare environment.
Resumo:
Enterprise Architecture Management (EAM) is discussed in academia and industry as a vehicle to guide IT implementations, alignment, compliance assessment, or technology management. Still, a lack of knowledge prevails about how EAM can be successfully used, and how positive impact can be realized from EAM. To determine these factors, we identify EAM success factors and measures through literature reviews and exploratory interviews and propose a theoretical model that explains key factors and measures of EAM success. We test our model with data collected from a cross-sectional survey of 133 EAM practitioners. The results confirm the existence of an impact of four distinct EAM success factors, ‘EAM product quality’, ‘EAM infrastructure quality’, ‘EAM service delivery quality’, and ‘EAM organizational anchoring’, and two important EAM success measures, ‘intentions to use EAM’ and ‘Organizational and Project Benefits’ in a confirmatory analysis of the model. We found the construct ‘EAM organizational anchoring’ to be a core focal concept that mediated the effect of success factors such as ‘EAM infrastructure quality’ and ‘EAM service quality’ on the success measures. We also found that ‘EAM satisfaction’ was irrelevant to determining or measuring success. We discuss implications for theory and EAM practice.
Resumo:
Purpose Performance heterogeneity between collaborative infrastructure projects is typically examined by considering procurement systems and their governance mechanisms at static points in time. The literature neglects to consider the impact of dynamic learning capability, which is thought to reconfigure governance mechanisms over time in response to evolving market conditions. This conceptual paper proposes a new model to show how continuous joint learning of participant organisations improves project performance. Design/methodology/approach There are two stages of conceptual development. In the first stage, the management literature is analysed to explain the Standard Model of dynamic learning capability that emphasises three learning phases for organisations. This Standard Model is extended to derive a novel Circular Model of dynamic learning capability that shows a new feedback loop between performance and learning. In the second stage, the construction management literature is consulted, adding project lifecycle, stakeholder diversity and three organisational levels to the analysis, to arrive at the Collaborative Model of dynamic learning capability. Findings The Collaborative Model should enable construction organisations to successfully adapt and perform under changing market conditions. The complexity of learning cycles results in capabilities that are imperfectly imitable between organisations, explaining performance heterogeneity on projects. Originality/value The Collaborative Model provides a theoretically substantiated description of project performance, driven by the evolution of procurement systems and governance mechanisms. The Model’s empirical value will be tested in future research.
Resumo:
Purpose This paper aims to look into the significance of architectural design in psychiatric care facilities. There is a strong correlation between perceptual dysfunction and psychiatric illness, and also between the patient and his environment. As such, even minor design choices can be of great consequence in a psychiatric facility. It is of critical importance, therefore, that a psychiatric milieu is sympathetic and does not exacerbate the psychosis. Design/methodology/approach This paper analyses the architectural elements that may influence mental health, using an architectural extrapolation of Antonovsky’s salutogenic theory, which states that better health results from a state of mind which has a fortified sense of coherence. According to the theory, a sense of coherence is fostered by a patient’s ability to comprehend the environment (comprehensibility), to be effective in his actions (manageability) and to find meaning (meaningfullness). Findings Salutogenic theory can be extrapolated in an architectural context to inform design choices when designing for a stress-sensitive client base. Research limitations/implications In the paper an architectural extrapolation of salutogenic theory is presented as a practical method for making design decisions (in praxis) when evidence is not available. As demonstrated, the results appear to reflect what evidence is available, but real evidence is always desirable over rationalist speculation. The method suggested here cannot prove the efficacy or appropriateness of design decisions and is not intended to do so. Practical implications The design of mental health facilities has long been dominated by unsubstantiated policy and normative opinions that do not always serve the client population. This method establishes a practical theoretical model for generating architectural design guidelines for mental health facilities. Originality/value The paper will prove to be helpful in several ways. First, salutogenic theory is a useful framework for improving health outcomes, but in the past the theory has never been applied in a methodological way. Second, there have been few insights into how the architecture itself can improve the functionality of a mental health facility other than improve the secondary functions of hospital services.
Resumo:
We developed an analysis pipeline enabling population studies of HARDI data, and applied it to map genetic influences on fiber architecture in 90 twin subjects. We applied tensor-driven 3D fluid registration to HARDI, resampling the spherical fiber orientation distribution functions (ODFs) in appropriate Riemannian manifolds, after ODF regularization and sharpening. Fitting structural equation models (SEM) from quantitative genetics, we evaluated genetic influences on the Jensen-Shannon divergence (JSD), a novel measure of fiber spatial coherence, and on the generalized fiber anisotropy (GFA) a measure of fiber integrity. With random-effects regression, we mapped regions where diffusion profiles were highly correlated with subjects' intelligence quotient (IQ). Fiber complexity was predominantly under genetic control, and higher in more highly anisotropic regions; the proportion of genetic versus environmental control varied spatially. Our methods show promise for discovering genes affecting fiber connectivity in the brain.
Resumo:
We report the first 3D maps of genetic effects on brain fiber complexity. We analyzed HARDI brain imaging data from 90 young adult twins using an information-theoretic measure, the Jensen-Shannon divergence (JSD), to gauge the regional complexity of the white matter fiber orientation distribution functions (ODF). HARDI data were fluidly registered using Karcher means and ODF square-roots for interpol ation; each subject's JSD map was computed from the spatial coherence of the ODFs in each voxel's neighborhood. We evaluated the genetic influences on generalized fiber anisotropy (GFA) and complexity (JSD) using structural equation models (SEM). At each voxel, genetic and environmental components of data variation were estimated, and their goodness of fit tested by permutation. Color-coded maps revealed that the optimal models varied for different brain regions. Fiber complexity was predominantly under genetic control, and was higher in more highly anisotropic regions. These methods show promise for discovering factors affecting fiber connectivity in the brain.
Resumo:
There is widespread agreement that entrepreneurial skills are crucial for young people today, yet there are few studies of high school students engaging in entrepreneurship education that might prepare them for music industry careers. This study has been developed in response to these challenges. It explores a group of high school students (15 – 17 years) who alongside their teacher, have co-designed, developed and driven a new business venture, Youth Music Industries (YMI) since 2010. This venture staged cycles of differently scaled events featuring young artists for a young audience. The project was designed to give students a real business situation for developing their project management skills and a broader understanding of working in the music industry. Informed by concepts of social capital and communities of practice, the study examines the process of learning with and through others. This high-stakes environment increased their sense of presence and participation and made it possible for these young people to distribute expertise and learn from each other in a reciprocal and more democratic way. The ongoing success of this organisation can be attributed to the entrepreneurial competencies students developed. The resulting model and design principles talk to an ongoing challenge that has been identified in music education, and creative industries more generally. These principles offer a way forward for other music and creative industries educators or researchers interested in developing models of, and designs for, nurturing an entrepreneurial mindset.
Resumo:
Since 2006, we have been conducting urban informatics research that we define as “the study, design, and practice of urban experiences across different urban contexts that are created by new opportunities of real-time, ubiquitous technology and the augmentation that mediates the physical and digital layers of people networks and urban infrastructures” [1]. Various new research initiatives under the label “urban informatics” have been started since then by universities (e.g., NYU’s Center for Urban Science and Progress) and industry (e.g., Arup, McKinsey) worldwide. Yet, many of these new initiatives are limited to what Townsend calls, “data-driven approaches to urban improvement” [2]. One of the key challenges is that any quantity of aggregated data does not easily translate directly into quality insights to better understand cities. In this talk, I will raise questions about the purpose of urban informatics research beyond data, and show examples of media architecture, participatory city making, and citizen activism. I argue for (1) broadening the disciplinary foundations that urban science approaches draw on; (2) maintaining a hybrid perspective that considers both the bird’s eye view as well as the citizen’s view, and; (3) employing design research to not be limited to just understanding, but to bring about actionable knowledge that will drive change for good.
Resumo:
Designers have become aware of the importance of creating strong emotional experiences intertwined with new tangible products for the past decade, however an increased interest from firms has emerged in developing new service and business models as complimentary forms of emotion-driven innovation. This interdisciplinary study draws from the psychological sciences – theory of emotion – and the management sciences – business model literature to introduce this new innovation agenda. The term visceral hedonic rhetoric (VHR) is defined as the properties of a product, (and in this paper service and business model extensions) that persuasively induce the pursuit of pleasure at an instinctual level of cognition. This research paper lays the foundation for VHR beyond a product setting, presenting the results from an empirical study where organizations explored the possibilities for VHR in the context of their business. The results found that firms currently believe VHR is perceived in either their product and/or services they provide. Implications suggest shifting perspective surrounding the use of VHR across a firm’s business model design in order to influence the outcomes of their product and/or service design, resulting in an overall stronger emotional connection with the customer.
Resumo:
Organisations use Enterprise Architecture (EA) to reduce organisational complexity, improve communication, align business and information technology (IT), and drive organisational change. Due to the dynamic nature of environmental and organisational factors, EA descriptions need to change over time to keep providing value for its stakeholders. Emerging business and IT trends, such as Service-Oriented Architecture (SOA), may impact EA frameworks, methodologies, governance and tools. However, the phenomenon of EA evolution is still poorly understood. Using Archer's morphogenetic theory as a foundation, this research conceptualises three analytical phases of EA evolution in organisations, namely conditioning, interaction and elaboration. Based on a case study with a government agency, this paper provides new empirically and theoretically grounded insights into EA evolution, in particular in relation to the introduction of SOA, and describes relevant generative mechanisms affecting EA evolution. By doing so, it builds a foundation to further examine the impact of other IT trends such as mobile or cloud-based solutions on EA evolution. At a practical level, the research delivers a model that can be used to guide professionals to manage EA and continually evolve it.