200 resultados para Mid-infrared lasers


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The composition of the lithosphere can be fundamentally altered by long-lived subduction processes such that subduction-modified lithosphere can survive for 100's Myrs. Incorrect petrotectonic interpretations result when spatial-temporal-compositional trends of, and source contributions to, magmatism are not properly considered. Western Mexico has had protracted Cenozoic magmatism developed mostly in-board of active oceanic plate subduction beneath western North America. A broad range of igneous compositions from basalt to high-silica rhyolite were erupted with intermediate to silicic compositions in particular, showing calc-alkaline and other typical subduction-related geochemical signatures. A major Oligocene rhyolitic ignimbrite “flare-up” (>300,000 km3) switched to a bimodal volcanic phase in the Early Miocene (~100,000 km3), associated with distributed extension and opening of numerous grabens. Extension became more focussed ~18 Ma resulting in localised volcanic activity along the future site of the Gulf of California. This localised volcanism (known as the Comondú “arc”) was dominantly effusive and andesite-dacite in composition. Past tectonic interpretations of Comondú-age volcanism may have been incorrect as these regional temporal-compositional changes are alternatively interpreted as a result of increased mixing of mantle-derived basaltic and crust-derived rhyolitic magmas in an active rift environment rather than fluid flux melting of the mantle wedge above the subducting Guadalupe Plate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An analytical method for the detection of carbonaceous gases by a non-dispersive infrared sensor (NDIR) has been developed. The calibration plots of six carbonaceous gases including CO2, CH4, CO, C2H2, C2H4 and C2H6 were obtained and the reproducibility determined to verify the feasibility of this gas monitoring method. The results prove that squared correlation coefficients for the six gas measurements are greater than 0.999. The reproducibility is excellent, thus indicating that this analytical method is useful to determinate the concentrations of carbonaceous gases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mineral tooeleite Fe6(AsO3)4SO4(OH)4�4H2O is secondary ferric arsenite sulphate mineral which has environmental significance for arsenic remediation because of its high stability in the regolith. The mineral has been studied by X-ray diffraction (XRD), infrared (IR) and Raman spectroscopy. The XRD result indicates tooeleite can form more crystalline solids in an acid environment than in an alkaline environment. Infrared spectroscopy identifies moderately intense band at 773 cm�1 assigned to AsO3� 3 symmetric stretching vibration. Raman spectroscopy identifies three bands at 803, 758 and 661 cm�1 assigned to the symmetric and antisymmetric stretching vibrations of AsO3� 3 and As-OH stretching vibration respectively. In addition, the infrared bands observed at 1116, 1040, 1090, 981 and 616 cm�1, are assigned to the m3, m1 and m4 modes of SO2� 4 . The same bands are observed at 1287, 1085, 983 and 604 cm�1 in the Raman spectrum. As3d band at binding energy of 44.05 eV in XPS confirms arsenic valence of tooeleite is +3. These characteristic bands in the IR and Raman spectra provide useful basis for identifying the mineral tooeleite.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have analyzed a frondelite mineral sample from the Cigana mine, located in the municipality of Conselheiro Pena, a well-known pegmatite in Brazil. In the Cigana pegmatite, secondary phosphates, namely eosphorite, fairfieldite, fluorapatite, frondelite, gormanite, hureaulite, lithiophilite, reddingite and vivianite are common minerals in miarolitic cavities and in massive blocks after triphylite. The chemical formula was determined as (Mn0.68, Fe0.32)(Fe3+)3,72(PO4)3.17(OH)4.99. The structure of the mineral was assessed using vibrational spectroscopy. Bands attributed to the stretching and bending modes of PO4 3- and HOPO3 3- units were identified. The observation of multiple bands supports the concept of symmetry reduction of the phosphate anion in the frondelite structure. Sharp Raman and infrared bands at 3581 cm−1 is assigned to the OH stretching vibration. Broad Raman bands at 3063, 3529 and 3365 cm−1 are attributed to water stretching vibrational modes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mineral weloganite Na2Sr3Zr(CO3)6·3H2O has been studied by using vibrational spectroscopy and a comparison is made with the spectra of weloganite with other carbonate minerals. Weloganite is member of the mckelveyite group that includes donnayite-(Y) and mckelveyite-(Y). The Raman spectrum of weloganite is characterized by an intense band at 1082 cm−1 with shoulder bands at 1061 and 1073 cm−1, attributed to the View the MathML source symmetric stretching vibration. The observation of three symmetric stretching vibrations is very unusual. The position of View the MathML source symmetric stretching vibration varies with mineral composition. The Raman bands at 1350, 1371, 1385, 1417, 1526, 1546, and 1563 cm−1 are assigned to the ν3 (CO3)2− antisymmetric stretching mode. The observation of additional Raman bands for the ν3 modes for weloganite is significant in that it shows distortion of the carbonate anion in the mineral structure. The Raman band observed at 870 cm−1 is assigned to the (CO3)2− ν2 bending mode. Raman bands observed for weloganite at 679, 682, 696, 728, 736, 749, and 762 cm−1 are assigned to the (CO3)2− ν4 bending modes. A comparison of the vibrational spectra is made with that of the rare earth carbonates decrespignyite, bastnasite, hydroxybastnasite, parisite, and northupite.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mineral creedite is a fluorinated hydroxy hydrated sulphate of aluminium and calcium of formula Ca3Al2SO4(F,OH)·2H2O. The mineral has been studied by a combination of electron probe analysis to determine the molecular formula of the mineral and the structure assessed by vibrational spectroscopy. The spectroscopy of creedite may be compared with that of the alums. The Raman spectrum of creedite is characterised by an intense sharp band at 986 cm−1 assigned to the View the MathML source ν1 (Ag) symmetric stretching mode. Multiple bands of creedite in the antisymmetric stretching region support the concept of a reduction in symmetry of the sulphate anion. Multiple bands are also observed in the bending region with the three bands at 601, 629 and 663 cm−1 assigned to the View the MathML source ν4 (Ag) bending modes. The observation of multiple bands at 440, 457 and 483 cm−1 attributed to the View the MathML source ν2 (Bg) bending modes supports the concept that the symmetry of the sulphate is reduced by coordination to the water bonded to the Al3+ in the creedite structure. The splitting of the ν2, ν3 and ν4 modes is attributed to the reduction of symmetry of the SO4 and it is proposed that the sulphate coordinates to water in the hydrated aluminium in bidentate chelation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The phosphate mineral leucophosphite K(Fe2)3þ(PO4)2(OH) · 2H2O has been characterized by SEM-EDS, Raman, and infrared spectro- scopic measurements. The mineral is predominantly a K and Fe phosphate with some minor substitution of Al in the Fe3þ site. Raman bands at 994 and 1058 cm-1 are assigned to the symmetric stretching modes of PO3- and HPO2- units. The Raman bands at 1104, 1135, and 1177 cm-1 are assigned to the PO3- and HPO2- antisymmetric stretching modes. Raman and infrared spectra in the 2600–3800 cm-1 region show a complex set of overlapping bands, which may be resolved into the component bands. The Raman bands observed at 3325, 3355, and 3456 cm-1 are attributed to water stretching vibrations, and in the infrared spectrum, bands at 3237, 3317, and 3453 cm-1 are assigned to water stretching bands.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The conventional mechanical properties of articular cartilage, such as compressive stiffness, have been demonstrated to be limited in their capacity to distinguish intact (visually normal) from degraded cartilage samples. In this paper, we explore the correlation between a new mechanical parameter, namely the reswelling of articular cartilage following unloading from a given compressive load, and the near infrared (NIR) spectrum. The capacity to distinguish mechanically intact from proteoglycan-depleted tissue relative to the "reswelling" characteristic was first established, and the result was subsequently correlated with the NIR spectral data of the respective tissue samples. To achieve this, normal intact and enzymatically degraded samples were subjected to both NIR probing and mechanical compression based on a load-unload-reswelling protocol. The parameter δ(r), characteristic of the osmotic "reswelling" of the matrix after unloading to a constant small load in the order of the osmotic pressure of cartilage, was obtained for the different sample types. Multivariate statistics was employed to determine the degree of correlation between δ(r) and the NIR absorption spectrum of relevant specimens using Partial Least Squared (PLS) regression. The results show a strong relationship (R(2)=95.89%, p<0.0001) between the spectral data and δ(r). This correlation of δ(r) with NIR spectral data suggests the potential for determining the reswelling characteristics non-destructively. It was also observed that δ(r) values bear a significant relationship with the cartilage matrix integrity, indicated by its proteoglycan content, and can therefore differentiate between normal and artificially degraded proteoglycan-depleted cartilage samples. It is therefore argued that the reswelling of cartilage, which is both biochemical (osmotic) and mechanical (hydrostatic pressure) in origin, could be a strong candidate for characterizing the tissue, especially in regions surrounding focal cartilage defects in joints.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In many countries there is a shortage of quality teachers in areas of science, technology, engineering and mathematics (STEM). Additional to the low levels of recruitment is an extraordinary high attrition rate with some 50% of beginning teachers leaving the profession within five years. One solution implemented in several countries has been to encourage mid-career professionals in the area of STEM to become school teachers. These professionals are said to bring to teaching enthusiasm, knowledge and a passion for their subject which will impact engagement and learning by students. However, these career-changers have constructed professional identities and are accustomed to working within a culture of collaboration and inquiry. In contrast, school cultures are quite different and often teaching is a lonely solitary affair with little opportunity for collegial relationships aimed at knowledge building in the context of teaching. Crossing from a culture of STEM to a culture of schools and teaching can be challenging. This study was conducted with 13 teachers who were followed for three years. However, this paper reports on the experiences of one teacher with an engineering background crossing the boundaries from practising STEM to Teaching STEM.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract An assessment of the molecular structure of carletonite a rare phyllosilicate mineral with general chemical formula given as KNa4Ca4Si8O18(CO3)4(OH,F)·H2O has been undertaken using vibrational spectroscopy. Carletonite has a complex layered structure. Within one period of c, it contains a silicate layer of composition NaKSi8O18·H2O, a carbonate layer of composition NaCO3·0.5H2O and two carbonate layers of composition NaCa2CO3(F,OH)0.5. Raman bands are observed at 1066, 1075 and 1086 cm−1. Whether these bands are due to the CO32- ν1 symmetric stretching mode or to an SiO stretching vibration is open to question. Multiple bands are observed in the 300–800 cm−1 spectral region, making the attribution of these bands difficult. Multiple water stretching and bending modes are observed showing that there is much variation in hydrogen bonding between water and the silicate and carbonate surfaces.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Associations between sitting-time and physical activity (PA) with depression are unclear. Purpose: To examine concurrent and prospective associations between both sitting-time and PA with prevalent depressive symptoms in mid-aged Australian women. Methods: Data were from 8,950 women, aged 50-55 years in 2001, who completed mail surveys in 2001, 2004, 2007 and 2010. Depressive symptoms were assessed using the Center for Epidemiological Studies Depression questionnaire. Associations between sitting-time (≤4, >4-7, >7 hrs/day) and PA (none, some, meeting guidelines) with depressive symptoms (symptoms/no symptoms) were examined in 2011 in concurrent and lagged mixed effect logistic modeling. Both main effects and interaction models were developed. Results: In main effects modeling, women who sat >7 hrs/day (OR 1.47, 95%CI 1.29-1.67) and women who did no PA (OR 1.99, 95%CI 1.75-2.27) were more likely to have depressive symptoms than women who sat ≤4 hrs/day and who met PA guidelines, respectively. In interaction modeling, the likelihood of depressive symptoms in women who sat >7 hrs/day and did no PA was triple that of women who sat ≤4 hrs/day and met PA guidelines (OR 2.96, 95%CI 2.37-3.69). In prospective main effects and interaction modeling, sitting-time was not associated with depressive symptoms, but women who did no PA were more likely than those who met PA guidelines to have future depressive symptoms (OR 1.26, 95%CI 1.08-1.47). Conclusions: Increasing PA to a level commensurate with PA guidelines can alleviate current depression symptoms and prevent future symptoms in mid-aged women. Reducing sitting-time may ameliorate current symptoms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Ureaplasma species in amniotic fluid at the time of second-trimester amniocentesis increases the risk of preterm birth, but most affected pregnancies continue to term (Gerber et al. J Infect Dis 2003). We aimed to model intra-amniotic (IA) ureaplasma infection in spiny mice, a species with a relatively long gestation (39 days) that allows investigation of the disposition and possible clearance of ureaplasmas in the feto-placental compartment. Method: Pregnant spiny mice received IA injections of U. parvum serovar 6 (10µL, 1x104 colony-forming-units in PBS) or 10B media (10µL; control) at 20 days (d) of gestation (term=39d). At 37d fetuses (n=3 ureaplasma, n=4 control) were surgically delivered and tissues were collected for; bacterial culture, ureaplasma mba and urease gene expression by PCR, tissue WBC counts and indirect fluorescent antibody (IFA) staining using anti-ureaplasma serovar 6 (rabbit) antiserum. Maternal and fetal plasma IgG was measured by Western blot. Results: Ureaplasmas were not detected by culture or PCR in fetal or maternal tissues but were visualized by IFA within placental and fetal lung tissues, in association with inflammatory changes and elevated WBC counts (p<0.0001). Anti-ureaplasma IgG was detected in maternal (2/2 tested) and fetal (1/2 tested) plasma but not in controls (0/3). Conclusions: IA injection of ureaplasmas in mid-gestation spiny mice caused persistent fetal lung and placental infection even though ureaplasmas were undetectable using standard culture or PCR techniques. This is consistent with resolution of IA infection, which may occur in human pregnancies that continue to term despite detection of ureaplasmas in mid-gestation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mineral amarantite Fe23+(SO4)O∙7H2O has been studied using a combination of techniques including thermogravimetry, electron probe analyses and vibrational spectroscopy. Thermal analysis shows decomposition steps at 77.63, 192.2, 550 and 641.4°C. The Raman spectrum of amarantite is dominated by an intense band at 1017 cm-1 assigned to the SO42- ν1 symmetric stretching mode. Raman bands at 1039, 1054, 1098, 1131, 1195 and 1233 cm-1 are attributed to the SO42- ν3 antisymmetric stretching modes. Very intense Raman band is observed at 409 cm-1 with shoulder bands at 399, 451 and 491 cm-1 are assigned to the v2 bending modes. A series of low intensity Raman bands are found at 543, 602, 622 and 650 cm-1 are assigned to the v4 bending modes. A very sharp Raman band at 3529 cm-1 is assigned to the stretching vibration of OH units. A series of Raman bands observed at 3025, 3089, 3227, 3340, 3401 and 3480 cm-1 are assigned to water bands. Vibrational spectroscopy enables aspects of the molecular structure of the mineral amarantite to be ascertained.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In Australia and increasingly worldwide, methamphetamine is one of the most commonly seized drugs analysed by forensic chemists. The current well-established GC/MS methods used to identify and quantify methamphetamine are lengthy, expensive processes, but often rapid analysis is requested by undercover police leading to an interest in developing this new analytical technique. Ninety six illicit drug seizures containing methamphetamine (0.1% - 78.6%) were analysed using Fourier Transform Infrared Spectroscopy with an Attenuated Total Reflectance attachment and Chemometrics. Two Partial Least Squares models were developed, one using the principal Infrared Spectroscopy peaks of methamphetamine and the other a Hierarchical Partial Least Squares model. Both of these models were refined to choose the variables that were most closely associated with the methamphetamine % vector. Both of the models were excellent, with the principal peaks in the Partial Least Squares model having Root Mean Square Error of Prediction 3.8, R2 0.9779 and lower limit of quantification 7% methamphetamine. The Hierarchical Partial Least Squares model had lower limit of quantification 0.3% methamphetamine, Root Mean Square Error of Prediction 5.2 and R2 0.9637. Such models offer rapid and effective methods for screening illicit drug samples to determine the percentage of methamphetamine they contain.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Colemanite CaB3O4(OH)3 H2O is a secondary borate mineral formed from borax and ulexite in evaporate deposits of alkaline lacustrine sediments. The basic structure of colemanite contains endless chains of interlocking BO2(OH) triangles and BO3(OH) tetrahedrons with the calcium, water and extra hydroxide units interspersed between these chains. The Raman spectra of colemanite is characterized by an intense band at 3605 cm-1 assigned to the stretching vibration of OH units and a series of bands at 3182, 3300, 3389 and 3534 cm-1 assigned to water stretching vibrations. Infrared bands are observed in similar positions. The BO stretching vibrations of the trigonal and tetrahedral boron are characterized by Raman bands at 876, 1065 and 1084 cm-1. The OBO bending mode is defined by the Raman band at 611 cm-1. It is important to characterize the very wide range of borate minerals including colemanite because of the very wide range of applications of boron containing minerals.