115 resultados para Microscopie à transmission électronique


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background In 2011, a variant of West Nile virus Kunjin strain (WNVKUN) caused an unprecedented epidemic of neurological disease in horses in southeast Australia, resulting in almost 1,000 cases and a 9% fatality rate. We investigated whether increased fitness of the virus in the primary vector, Culex annulirostris, and another potential vector, Culex australicus, contributed to the widespread nature of the outbreak. Methods Mosquitoes were exposed to infectious blood meals containing either the virus strain responsible for the outbreak, designated WNVKUN2011, or WNVKUN2009, a strain of low virulence that is typical of historical strains of this virus. WNVKUN infection in mosquito samples was detected using a fixed cell culture enzyme immunoassay and a WNVKUN- specific monoclonal antibody. Probit analysis was used to determine mosquito susceptibility to infection. Infection, dissemination and transmission rates for selected days post-exposure were compared using Fisher’s exact test. Virus titers in bodies and saliva expectorates were compared using t-tests. Results There were few significant differences between the two virus strains in the susceptibility of Cx. annulirostris to infection, the kinetics of virus replication and the ability of this mosquito species to transmit either strain. Both strains were transmitted by Cx. annulirostris for the first time on day 5 post-exposure. The highest transmission rates (proportion of mosquitoes with virus detected in saliva) observed were 68% for WNVKUN2011 on day 12 and 72% for WNVKUN2009 on day 14. On days 12 and 14 post-exposure, significantly more WNVKUN2011 than WNVKUN2009 was expectorated by infected mosquitoes. Infection, dissemination and transmission rates of the two strains were not significantly different in Culex australicus. However, transmission rates and the amount of virus expectorated were significantly lower in Cx. australicus than Cx. annulirostris. Conclusions The higher amount of WNVKUN2011 expectorated by infected mosquitoes may be an indication that this virus strain is transmitted more efficiently by Cx. annulirostris compared to other WNVKUN strains. Combined with other factors, such as a convergence of abundant mosquito and wading bird populations, and mammalian and avian feeding behaviour by Cx. annulirostris, this may have contributed to the scale of the 2011 equine epidemic.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Dengue viruses (DENV) are the causative agents of dengue, the world's most prevalent arthropod-borne disease with around 40% of the world's population at risk of infection annually. Wolbachia pipientis, an obligate intracellular bacterium, is being developed as a biocontrol strategy against dengue because it limits replication of the virus in the mosquito. The Wolbachia strain wMel, which has been introduced into the mosquito vector, Aedes aegypti, has been shown to invade and spread to near fixation in field releases. Standard measures of Wolbachia's efficacy for blocking virus replication focus on the detection and quantification of virus in mosquito tissues. Examining the saliva provides a more accurate measure of transmission potential and can reveal the extrinsic incubation period (EIP), that is, the time it takes virus to arrive in the saliva following the consumption of DENV viremic blood. EIP is a key determinant of a mosquito's ability to transmit DENVs, as the earlier the virus appears in the saliva the more opportunities the mosquito will have to infect humans on subsequent bites. METHODOLOGY/PRINCIPAL FINDINGS: We used a non-destructive assay to repeatedly quantify DENV in saliva from wMel-infected and Wolbachia-free wild-type control mosquitoes following the consumption of a DENV-infected blood meal. We show that wMel lengthens the EIP, reduces the frequency at which the virus is expectorated and decreases the dengue copy number in mosquito saliva as compared to wild-type mosquitoes. These observations can at least be partially explained by an overall reduction in saliva produced by wMel mosquitoes. More generally, we found that the concentration of DENV in a blood meal is a determinant of the length of EIP, saliva virus titer and mosquito survival. CONCLUSIONS/SIGNIFICANCE: The saliva-based traits reported here offer more disease-relevant measures of Wolbachia's effects on the vector and the virus. The lengthening of EIP highlights another means, in addition to the reduction of infection frequencies and DENV titers in mosquitoes, by which Wolbachia should operate to reduce DENV transmission in the field.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper considers the transmission of volatility in global foreign exchange, equity and bond markets. Using a multivariate GARCH framework which includes measures of realised volatility as explanatory variables, significant volatility and news spillovers are found to occur on the same trading day between Japan, Europe, and the United States. All markets exhibit significant degrees of asymmetry in terms of the transmission of volatility associated with good and bad news. There are also strong links between diffusive volatilities in all three markets, whereas jumpactivity is only importantwithin the equitymarkets. The results of this paper deepen our understanding of how news and volatility are propagated through global financial markets.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Crystallization of amorphous germanium (a-Ge) by laser or electron beam heating is a remarkably complex process that involves several distinct modes of crystal growth and the development of intricate microstructural patterns on the nanosecond to ten microsecond time scales. Here we use dynamic transmission electron microscopy (DTEM) to study the fast, complex crystallization dynamics with 10 nm spatial and 15 ns temporal resolution. We have obtained time-resolved real-space images of nanosecond laser-induced crystallization in a-Ge with unprecedentedly high spatial resolution. Direct visualization of the crystallization front allows for time-resolved snapshots of the initiation and roughening of the dendrites on submicrosecond time scales. This growth is followed by a rapid transition to a ledgelike growth mechanism that produces a layered microstructure on a time scale of several microseconds. This study provides insights into the mechanisms governing this complex crystallization process and is a dramatic demonstration of the power of DTEM for studying time-dependent material processes far from equilibrium.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The crystallization of amorphous semiconductors is a strongly exothermic process. Once initiated the release of latent heat can be sufficient to drive a self-sustaining crystallization front through the material in a manner that has been described as explosive. Here, we perform a quantitative in situ study of explosive crystallization in amorphous germanium using dynamic transmission electron microscopy. Direct observations of the speed of the explosive crystallization front as it evolves along a laser-imprinted temperature gradient are used to experimentally determine the complete interface response function (i.e., the temperature-dependent front propagation speed) for this process, which reaches a peak of 16 m/s. Fitting to the Frenkel-Wilson kinetic law demonstrates that the diffusivity of the material locally/immediately in advance of the explosive crystallization front is inconsistent with those of a liquid phase. This result suggests a modification to the liquid-mediated mechanism commonly used to describe this process that replaces the phase change at the leading amorphous-liquid interface with a change in bonding character (from covalent to metallic) occurring in the hot amorphous material.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report electron microscopic evidence of transmission from a pet dog to a 12-year-girl of Gastrospirillum hominis which caused gastric disease in both that was eradicable with treatment. © 1994.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Measurement of loading patterns of the patellar tendon during activity is important in understanding tendon injury. We used transmission-mode ultrasonography to investigate patellar tendon loading during squatting in adults with and without tendinopathy. It was hypothesized that axial ultrasonic velocity, a surrogate measure of the elastic modulus of tendon, would be lower in tendinopathy. Ultrasound velocity was measured in both patellar tendons of adults with unilateral patellar tendinopathy (n=9) and in healthy controls (n=16) during a bilateral squat manoeuvre. Sagittal knee movement was measured simultaneously with an electrogoniometer. Statistical comparisons between healthy and injured tendons were made using 2–way mixed–design ANOVAs. Axial ultrasound velocity in both symptomatic and asymptomatic patellar tendons in tendinopathy was approximately 15% higher than in healthy tendons at the commencement (F1,23=5.2, P<.05) and completion (F1,23=4.5, P<.05) of the squat. While peak velocity was ≈5% higher during both flexion (F1,23=5.4, P<.05) and extension (F1,23=5.3, P<.05) phases, there was no significant between–group difference at the mid–point of the movement. There were no significant differences in the rate and magnitude of knee movement between groups. Although further research is required, these findings suggest enhanced baseline muscle activity in patellar tendinopathy and highlight fresh avenues for its clinical management.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background A pandemic strain of influenza A spread rapidly around the world in 2009, now referred to as pandemic (H1N1) 2009. This study aimed to examine the spatiotemporal variation in the transmission rate of pandemic (H1N1) 2009 associated with changes in local socio-environmental conditions from May 7–December 31, 2009, at a postal area level in Queensland, Australia. Method We used the data on laboratory-confirmed H1N1 cases to examine the spatiotemporal dynamics of transmission using a flexible Bayesian, space–time, Susceptible-Infected-Recovered (SIR) modelling approach. The model incorporated parameters describing spatiotemporal variation in H1N1 infection and local socio-environmental factors. Results The weekly transmission rate of pandemic (H1N1) 2009 was negatively associated with the weekly area-mean maximum temperature at a lag of 1 week (LMXT) (posterior mean: −0.341; 95% credible interval (CI): −0.370–−0.311) and the socio-economic index for area (SEIFA) (posterior mean: −0.003; 95% CI: −0.004–−0.001), and was positively associated with the product of LMXT and the weekly area-mean vapour pressure at a lag of 1 week (LVAP) (posterior mean: 0.008; 95% CI: 0.007–0.009). There was substantial spatiotemporal variation in transmission rate of pandemic (H1N1) 2009 across Queensland over the epidemic period. High random effects of estimated transmission rates were apparent in remote areas and some postal areas with higher proportion of indigenous populations and smaller overall populations. Conclusions Local SEIFA and local atmospheric conditions were associated with the transmission rate of pandemic (H1N1) 2009. The more populated regions displayed consistent and synchronized epidemics with low average transmission rates. The less populated regions had high average transmission rates with more variations during the H1N1 epidemic period.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sexually transmitted Chlamydia trachomatis causes infertility, and because almost 90% of infections are asymptomatic, a vaccine is required for its eradication. Mathematical modeling studies have indicated that a vaccine eliciting partial protection (non-sterilizing) may prevent Chlamydia infection transmission, if administered to both sexes before an infection. However, reducing chlamydial inoculum transmitted by males and increasing infection resistance in females through vaccination to elicit sterilizing immunity has yet to be investigated experimentally. Here we show that a partially protective vaccine (chlamydial major outer membrane protein (MOMP) and ISCOMATRIX (IMX) provided sterilizing immunity against sexual transmission between immunized mice. Immunizing male or female mice before an infection reduced chlamydial burden and disease development, but did not prevent infection. However, infection and inflammatory disease responsible for infertility were absent in 100% of immunized female mice challenged intravaginally with ejaculate collected from infected immunized males. In contrast to the sterilizing immunity generated following recovery from a previous chlamydial infection, protective immunity conferred by MOMP/IMX occurred independent of resident memory T cells. Our results demonstrate that vaccination of males or females can further protect the opposing sex, whereas vaccination of both sexes can synergize to elicit sterilizing immunity against Chlamydia sexual transmission.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Elucidating the structure and dynamics of lamellipodia and filopodia in response to different stimuli is a topic of continuing interest in cancer cells as these structures may be attractive targets for therapeutic purposes. Interestingly, a close functional relationship between these actin-rich protrusions and specialized membrane domains has been recently demonstrated. The aim of this study was therefore to investigate the fine organization of these actin-rich structures and examine how they structurally may relate to detergent-resistant membrane (DRM) domains in the MTLn3 EGF/serum starvation model. For this reason, we designed a straightforward and alternative method to study cytoskeleton arrays and their associated structures by means of correlative fluorescence (/laser)- and electron microscopy (CFEM). CFEM on whole mounted breast cancer cells revealed that a lamellipodium is composed of an intricate filamentous actin web organized in various patterns after different treatments. Both actin dots and DRM's were resolved, and were closely interconnected with the surrounding cytoskeleton. Long actin filaments were repeatedly observed extending beyond the leading edge and their density and length varied after different treatments. Furthermore, CFEM also allowed us to demonstrate the close structural association of DRMs with the cytoskeleton in general and the filamentous/dot-like structural complexes in particular, suggesting that they are all functionally linked and consequently may regulate the cell's fingertip dynamics. Finally, electron tomographic modelling on the same CFEM samples confirmed that these extensions are clearly embedded within the cytoskeletal matrix of the lamellipodium.