109 resultados para Mammal Phylogeny


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background The Pacific Oceania region was one of the last regions of the world to be settled via human migration. Here we outline a settlement of this region that has given rise to a uniquely admixed population. The current Norfolk Island population has arisen from a small number of founders with mixed Caucasian and Polynesian ancestry, descendants of a famous historical event. The ‘Mutiny on the Bounty’ has been told in history books, songs and the big screen, but recently this story can be portrayed through comprehensive molecular genetics. Written history details betrayal and murder leading to the founding of Pitcairn Island by European mutineers and the Polynesian women who left Tahiti with them. Investigation of detailed genealogical records supports historical accounts. Findings Using genetics, we show distinct maternal Polynesian mitochondrial lineages in the present day population, as well as a European centric Y-chromosome phylogeny. These results comprehensively characterise the unique gender-biased admixture of this genetic isolate and further support the historical records relating to Norfolk Island. Conclusions Our results significantly refine previous population genetic studies investigating Polynesian versus Caucasian diversity in the Norfolk Island population and add information that is beneficial to future disease and gene mapping studies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present the complete mitochondrial genome (accession number: LK995454) of an iconic Australian species, the eastern grey kangaroo (Macropus giganteus). The mitogenomic organization is consistent with other marsupials, encoding 13 protein-coding genes, 22 tRNA genes, 2 ribosomal RNA genes, an origin of light strand replication and a control region or Dloop. No repetitive sequences were detected in the control region. The M. giganteus mitogenome exemplifies a combination of tRNA gene order and structural peculiarities that appear to be unique to marsupials. We present a maximum likelihood phylogeny based on complete mitochondrial protein and RNA coding sequences that confirms the phylogenetic position of the grey kangaroo among macropodids.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Jarvis et al. (Research Articles, 12 December 2014, p. 1320) presented molecular clock analyses that suggested that most modern bird orders diverged just after the mass extinction event at the Cretaceous-Paleogene boundary (about 66 million years ago). We demonstrate that this conclusion results from the use of a single inappropriate maximum bound, which effectively precludes the Cretaceous diversification overwhelmingly supported by previous molecular studies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Birds represent the most diverse extant tetrapod clade, with ca. 10,000 extant species, and the timing of the crown avian radiation remains hotly debated. The fossil record supports a primarily Cenozoic radiation of crown birds, whereas molecular divergence dating analyses generally imply that this radiation was well underway during the Cretaceous. Furthermore, substantial differences have been noted between published divergence estimates. These have been variously attributed to clock model, calibration regime, and gene type. One underappreciated phenomenon is that disparity between fossil ages and molecular dates tends to be proportionally greater for shallower nodes in the avian Tree of Life. Here, we explore potential drivers of disparity in avian divergence dates through a set of analyses applying various calibration strategies and coding methods to a mitochondrial genome dataset and an 18-gene nuclear dataset, both sampled across 72 taxa. Our analyses support the occurrence of two deep divergences (i.e., the Palaeognathae/Neognathae split and the Galloanserae/Neoaves split) well within the Cretaceous, followed by a rapid radiation of Neoaves near the K-Pg boundary. However, 95% highest posterior density intervals for most basal divergences in Neoaves cross the boundary, and we emphasize that, barring unreasonably strict prior distributions, distinguishing between a rapid Early Paleocene radiation and a Late Cretaceous radiation may be beyond the resolving power of currently favored divergence dating methods. In contrast to recent observations for placental mammals, constraining all divergences within Neoaves to occur in the Cenozoic does not result in unreasonably high inferred substitution rates. Comparisons of nuclear DNA (nDNA) versus mitochondrial DNA (mtDNA) datasets and NT- versus RY-coded mitochondrial data reveal patterns of disparity that are consistent with substitution model misspecifications that result in tree compression/tree extension artifacts, which may explain some discordance between previous divergence estimates based on different sequence types. Comparisons of fully calibrated and nominally calibrated trees support a correlation between body mass and apparent dating error. Overall, our results are consistent with (but do not require) a Paleogene radiation for most major clades of crown birds.