124 resultados para Latent Semantic Indexing
Resumo:
We used event-related functional magnetic resonance imaging (fMRI) to investigate neural responses associated with the semantic interference (SI) effect in the picture-word task. Independent stage models of word production assume that the locus of the SI effect is at the conceptual processing level (Levelt et al. [1999]: Behav Brain Sci 22:1-75), whereas interactive models postulate that it occurs at phonological retrieval (Starreveld and La Heij [1996]: J Exp Psychol Learn Mem Cogn 22:896-918). In both types of model resolution of the SI effect occurs as a result of competitive, spreading activation without the involvement of inhibitory links. These assumptions were tested by randomly presenting participants with trials from semantically-related and lexical control distractor conditions and acquiring image volumes coincident with the estimated peak hemodynamic response for each trial. Overt vocalization of picture names occurred in the absence of scanner noise, allowing reaction time (RT) data to be collected. Analysis of the RT data confirmed the SI effect. Regions showing differential hemodynamic responses during the SI effect included the left mid section of the middle temporal gyrus, left posterior superior temporal gyrus, left anterior cingulate cortex, and bilateral orbitomedial prefrontal cortex. Additional responses were observed in the frontal eye fields, left inferior parietal lobule, and right anterior temporal and occipital cortex. The results are interpreted as indirectly supporting interactive models that allow spreading activation between both conceptual processing and phonological retrieval levels of word production. In addition, the data confirm that selective attention/response suppression has a role in resolving the SI effect similar to the way in which Stroop interference is resolved. We conclude that neuroimaging studies can provide information about the neuroanatomical organization of the lexical system that may prove useful for constraining theoretical models of word production.
Resumo:
Qualitative aspects of verbal fluency may be more useful in discerning the precise cause of any quantitative deficits in phonetic or category fluency, especially in the case of mild cognitive impairment (MCI), a possible intermediate stage between normal performance and Alzheimer's disease (AD). The aim of this study was to use both quantitative and qualitative (switches and clusters) methods to compare the phonetic and category verbal fluency performance of elderly adults with no cognitive impairment (n = 51), significant memory impairment (n = 16), and AD (n = 16). As expected, the AD group displayed impairments in all quantitative and qualitative measures of the two fluency tasks relative to their age- and education-matched peers. By contrast, the amnestic MCI group produced fewer animal names on the semantic fluency task than controls and showed normal performance on the phonetic fluency task. The MCI group's inferior category fluency performance was associated with a deficit in their category-switching rate rather than word cluster size. Overall, the results indicate that a semantic measure such as category fluency when used in conjunction with a test of episodic memory may increase the sensitivity for detecting preclinical AD. Future research using external cues and other measures of set shifting capacity may assist in clarifying the origin of the amnestic MCI-specific category-switching deficiency. Copyright
Resumo:
Di�culty naming objects is one of the most common impairments in people with aphasia post-stroke, irrespective of aphasia classification (Goodglass & Wingfield, 1997). Thus, remediation of naming impairments is often a focus of treatment in the rehabilitation of language. Such treatments typically employ phonological or semantic approaches, or a combination of the two, in order to target the major cognitive components involved in word retrieval (Nickels,2002). Although individuals can show greater benefit from one approach over the other, the relationship between an individual’s locus of breakdown in word retrieval and response to a particular treatment approach remains unclear, and knowledge of the underlying neural mechanisms which may be responsible for successful treatment is scarce. The aim of this study was to examine brain activity associated with successful phonological and semantic based treatments for word retrieval using functional Magnetic Resonance Imaging fMRI).
Resumo:
Naming impairments in aphasia are typically targeted using semantic and/or phonologically based tasks. However, it is not known whether these treatments have different neural mechanisms. Eight participants with aphasia received twelve treatment sessions using an alternating treatment design, with fMRI scans pre- and post-treatment. Half the sessions employed Phonological Components Analysis (PCA), and half the sessions employed Semantic Feature Analysis (SFA). Pre-treatment activity in the left caudate correlated with greater immediate treatment success for items treated with SFA, whereas recruitment of the left supramarginal gyrus and right precuneus post-treatment correlated with greater immediate treatment success for items treated with PCA. The results support previous studies that have found greater treatment outcome to be associated with activity in predominantly left hemisphere regions, and suggest that different mechanisms may be engaged dependent on the type of treatment employed.
Resumo:
Broad knowledge is required when a business process is modeled by a business analyst. We argue that existing Business Process Management methodologies do not consider business goals at the appropriate level. In this paper we present an approach to integrate business goals and business process models. We design a Business Goal Ontology for modeling business goals. Furthermore, we devise a modeling pattern for linking the goals to process models and show how the ontology can be used in query answering. In this way, we integrate the intentional perspective into our business process ontology framework, enriching the process description and enabling new types of business process analysis. © 2008 IEEE.
Resumo:
Long-lasting interference effects in picture naming are induced when objects are presented in categorically related contexts in both continuous and blocked cyclic paradigms. Less consistent context effects have been reported when the task is changed to semantic classification. Experiment 1 confirmed the recent finding of cumulative facilitation in the continuous paradigm with living/non-living superordinate categorization. To avoid a potential confound involving participants responding with the identical superordinate category in related contexts in the blocked cyclic paradigm, we devised a novel set of categorically related objects that also varied in terms of relative age – a core semantic type associated with the adjective word class across languages. Experiment 2 demonstrated the typical interference effect with these stimuli in basic level naming. In Experiment 3, using the identical blocked cyclic paradigm, we failed to observe semantic context effects when the same pictures were classified as younger–older. Overall, the results indicate the semantic context effects in the two paradigms do not share a common origin, with the effect in the continuous paradigm arising at the level of conceptual representations or in conceptual-to-lexical connections while the effect in the blocked cyclic paradigm most likely originates at a lexical level of representation. The implications of these findings for current accounts of long-lasting interference effects in spoken word production are discussed.
Resumo:
Access to transport systems and the connection to such systems provided to essential economic and social activities are critical to determine households' transportation disadvantage levels. In spite of the developments in better identifying transportation disadvantaged groups, the lack of effective policies resulted in the continuum of the issue as a significant problem. This paper undertakes a pilot case investigation as test bed for a new approach developed to reduce transportation policy shortcomings. The approach, ‘disadvantage-impedance index’, aims to ease transportation disadvantages by employing representative parameters to measure the differences between policy alternatives run in a simulation environment. Implemented in the Japanese town of Arao, the index uses trip-making behaviour and resident stated preference data. The results of the index reveal that even a slight improvement in accessibility and travel quality indicators makes a significant difference in easing disadvantages. The index, integrated into a four-step model, proves to be highly robust and useful in terms of quick diagnosis in capturing effective actions, and developing potentially efficient policies.
Resumo:
This paper presents a symbolic navigation system that uses spatial language descriptions to inform goal-directed exploration in unfamiliar office environments. An abstract map is created from a collection of natural language phrases describing the spatial layout of the environment. The spatial representation in the abstract map is controlled by a constraint based interpretation of each natural language phrase. In goal-directed exploration of an unseen office environment, the robot links the information in the abstract map to observed symbolic information and its grounded world representation. This paper demonstrates the ability of the system, in both simulated and real-world trials, to efficiently find target rooms in environments that it has never been to previously. In three unexplored environments, it is shown that on average the system travels only 8.42% further than the optimal path when using only natural language phrases to complete navigation tasks.
Resumo:
Context: Identifying susceptibility genes for schizophrenia may be complicated by phenotypic heterogeneity, with some evidence suggesting that phenotypic heterogeneity reflects genetic heterogeneity. Objective: To evaluate the heritability and conduct genetic linkage analyses of empirically derived, clinically homogeneous schizophrenia subtypes. Design: Latent class and linkage analysis. Setting: Taiwanese field research centers. Participants: The latent class analysis included 1236 Han Chinese individuals with DSM-IV schizophrenia. These individuals were members of a large affected-sibling-pair sample of schizophrenia (606 ascertained families), original linkage analyses of which detected a maximum logarithm of odds (LOD) of 1.8 (z = 2.88) on chromosome 10q22.3. Main Outcome Measures: Multipoint exponential LOD scores by latent class assignment and parametric heterogeneity LOD scores. Results: Latent class analyses identified 4 classes, with 2 demonstrating familial aggregation. The first (LC2) described a group with severe negative symptoms, disorganization, and pronounced functional impairment, resembling “deficit schizophrenia.” The second (LC3) described a group with minimal functional impairment, mild or absent negative symptoms, and low disorganization. Using the negative/deficit subtype, we detected genome-wide significant linkage to 1q23-25 (LOD = 3.78, empiric genome-wide P = .01). This region was not detected using the DSM-IV schizophrenia diagnosis, but has been strongly implicated in schizophrenia pathogenesis by previous linkage and association studies.Variants in the 1q region may specifically increase risk for a negative/deficit schizophrenia subtype. Alternatively, these results may reflect increased familiality/heritability of the negative class, the presence of multiple 1q schizophrenia risk genes, or a pleiotropic 1q risk locus or loci, with stronger genotype-phenotype correlation with negative/deficit symptoms. Using the second familial latent class, we identified nominally significant linkage to the original 10q peak region. Conclusion: Genetic analyses of heritable, homogeneous phenotypes may improve the power of linkage and association studies of schizophrenia and thus have relevance to the design and analysis of genome-wide association studies.
Resumo:
Latent class and genetic analyses were used to identify subgroups of migraine sufferers in a community sample of 6,265 Australian twins (55% female) aged 25-36 who had completed an interview based on International Headache Society (IHS) criteria. Consistent with prevalence rates from other population-based studies, 703 (20%) female and 250 (9%) male twins satisfied the IHS criteria for migraine without aura (MO), and of these, 432 (13%) female and 166 (6%) male twins satisfied the criteria for migraine with aura (MA) as indicated by visual symptoms. Latent class analysis (LCA) of IHS symptoms identified three major symptomatic classes, representing 1) a mild form of recurrent nonmigrainous headache, 2) a moderately severe form of migraine, typically without visual aura symptoms (although 40% of individuals in this class were positive for aura), and 3) a severe form of migraine typically with visual aura symptoms (although 24% of individuals were negative for aura). Using the LCA classification, many more individuals were considered affected to some degree than when using IHS criteria (35% vs. 13%). Furthermore, genetic model fitting indicated a greater genetic contribution to migraine using the LCA classification (heritability, h(2)=0.40; 95% CI, 0.29-0.46) compared with the IHS classification (h(2)=0.36; 95% CI, 0.22-0.42). Exploratory latent class modeling, fitting up to 10 classes, did not identify classes corresponding to either the IHS MO or MA classification. Our data indicate the existence of a continuum of severity, with MA more severe but not etiologically distinct from MO. In searching for predisposing genes, we should therefore expect to find some genes that may underlie all major recurrent headache subtypes, with modifying genetic or environmental factors that may lead to differential expression of the liability for migraine.
Resumo:
For zygosity diagnosis in the absence of genotypic data, or in the recruitment phase of a twin study where only single twins from same-sex pairs are being screened, or to provide a test for sample duplication leading to the false identification of a dizygotic pair as monozygotic, the appropriate analysis of respondents' answers to questions about zygosity is critical. Using data from a young adult Australian twin cohort (N = 2094 complete pairs and 519 singleton twins from same-sex pairs with complete responses to all zygosity items), we show that application of latent class analysis (LCA), fitting a 2-class model, yields results that show good concordance with traditional methods of zygosity diagnosis, but with certain important advantages. These include the ability, in many cases, to assign zygosity with specified probability on the basis of responses of a single informant (advantageous when one zygosity type is being oversampled); and the ability to quantify the probability of misassignment of zygosity, allowing prioritization of cases for genotyping as well as identification of cases of probable laboratory error. Out of 242 twins (from 121 like-sex pairs) where genotypic data were available for zygosity confirmation, only a single case was identified of incorrect zygosity assignment by the latent class algorithm. Zygosity assignment for that single case was identified by the LCA as uncertain (probability of being a monozygotic twin only 76%), and the co-twin's responses clearly identified the pair as dizygotic (probability of being dizygotic 100%). In the absence of genotypic data, or as a safeguard against sample duplication, application of LCA for zygosity assignment or confirmation is strongly recommended.
Resumo:
The prevalence of latent autoimmune diabetes in adults (LADA) in patients diagnosed with type 2 diabetes mellitus (T2DM) ranges from 7 to 10% (1). They present at a younger age and have a lower BMI but poorer glycemic control, which may increase the risk of complications (2). However, a recent analysis of the Collaborative Atorvastatin Diabetes Study (CARDS) has demonstrated no difference in macrovascular or microvascular events between patients with LADA and T2DM, but neuropathy was not assessed (3). Previous studies quantifying neuropathy in patients with LADA are limited. In this study, we aimed to accurately quantify neuropathy in subjects with LADA compared with matched patients with T2DM.
Resumo:
Despite compulsory mathematics throughout primary and junior secondary schooling, many schools across Australia continue in their struggle to achieve satisfactory numeracy levels. Numeracy is not a distinct subject in school curriculum, and in fact appears as a general capability in the Australian Curriculum, wherein all teachers across all curriculum areas are responsible for numeracy. This general capability approach confuses what numeracy should look like, especially when compared to the structure of numeracy as defined on standardised national tests. In seeking to define numeracy, schools tend to look at past NAPLAN papers, and in doing so, we do not find examples drawn from the various aspects of school curriculum. What we find are more traditional forms of mathematical worded problems.
Resumo:
In this article, we introduce the general statistical analysis approach known as latent class analysis and discuss some of the issues associated with this type of analysis in practice. Two recent examples from the respiratory health literature are used to highlight the types of research questions that have been addressed using this approach.
Resumo:
The current state of the practice in Blackspot Identification (BSI) utilizes safety performance functions based on total crash counts to identify transport system sites with potentially high crash risk. This paper postulates that total crash count variation over a transport network is a result of multiple distinct crash generating processes including geometric characteristics of the road, spatial features of the surrounding environment, and driver behaviour factors. However, these multiple sources are ignored in current modelling methodologies in both trying to explain or predict crash frequencies across sites. Instead, current practice employs models that imply that a single underlying crash generating process exists. The model mis-specification may lead to correlating crashes with the incorrect sources of contributing factors (e.g. concluding a crash is predominately caused by a geometric feature when it is a behavioural issue), which may ultimately lead to inefficient use of public funds and misidentification of true blackspots. This study aims to propose a latent class model consistent with a multiple crash process theory, and to investigate the influence this model has on correctly identifying crash blackspots. We first present the theoretical and corresponding methodological approach in which a Bayesian Latent Class (BLC) model is estimated assuming that crashes arise from two distinct risk generating processes including engineering and unobserved spatial factors. The Bayesian model is used to incorporate prior information about the contribution of each underlying process to the total crash count. The methodology is applied to the state-controlled roads in Queensland, Australia and the results are compared to an Empirical Bayesian Negative Binomial (EB-NB) model. A comparison of goodness of fit measures illustrates significantly improved performance of the proposed model compared to the NB model. The detection of blackspots was also improved when compared to the EB-NB model. In addition, modelling crashes as the result of two fundamentally separate underlying processes reveals more detailed information about unobserved crash causes.