397 resultados para Integral properties


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Based on the embedded atom method (EAM) and molecular dynamics (MD) method, in this paper, the tensile deformation properties of Cu nanowires (NWs) with different pre-existing defects, including single surface defects, surface bi-defects and single internal defects, are systematically studied. In-depth deformation mechanisms of NWs with pre-existing defects are also explored. It is found that Young's modulus is insensitive to different pre-existing defects, but yield strength shows an obvious decrease. Defects are observed influencing greatly on NWs' tensile deformation mechanisms, and playing a role of dislocation sources. Besides of the traditional deformation process dominated by the nucleation and propagation of partial dislocations, the generations of twins, grain boundaries, fivefold deformation twins, hexagonal close-packed (HCP) structure and phase transformation from face-centred cubic (FCC) structure to HCP structure have been triggered by pre-existing defects. It is found that surface defect intends to induce larger influence to yield strength than internal defect. Most importantly, the defect that lies on slip planes exerts larger influence than other defects. As expected, it is also found that the more or longer of the defect, the bigger influence will be induced.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gas sensing properties of nanostructured pure and iron-doped WO3 thin films are discussed. Electron beam evaporation technique has been used to obtain nanostructured thin films of WO3 and WO3:Fe with small grain size and porosity. Atomic force microscopy has been employed to study the microstructure. High sensitivity of both films towards NO2 is observed. Doping of the tungsten oxide film with Fe decreased the material resistance by a factor of about 30 when exposed to 5 ppm NO2. The high sensitivity is attributed to an improved microstructure of the films obtained through e-beam evaporation technique, and subsequent annealing at 300oC for 1 hour.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Based on the AFM-bending experiments, a molecular dynamics (MD) bending simulation model is established which could accurately account for the full spectrum of the mechanical properties of NWs in a double clamped beam configuration, ranging from elasticity to plasticity and failure. It is found that, loading rate exerts significant influence to the mechanical behaviours of nanowires (NWs). Specifically, a loading rate lower than 10 m/s is found reasonable for a homogonous bending deformation. Both loading rate and potential between the tip and the NW are found to play an important role in the adhesive phenomenon. The force versus displacement (F-d) curve from MD simulation is highly consistent in shapes with that from experiments. Symmetrical F-d curves during loading and unloading processes are observed, which reveal the linear-elastic and non-elastic bending deformation of NWs. The typical bending induced tensile-compressive features are observed. Meanwhile, the simulation results are excellently fitted by the classical Euler-Bernoulli beam theory with axial effect. It is concluded that, axial tensile force becomes crucial in bending deformation when the beam size is down to nanoscale for double clamped NWs. In addition, we find shorter NWs will have an earlier yielding and a larger yielding force. Mechanical properties (Young’s modulus & yield strength) obtained from both bending and tensile deformations are found comparable with each other. Specifically, the modulus is essentially similar under these two loading methods, while the yield strength during bending is observed larger than that during tension.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The main constituents of red mud produced in Aluminio city (S.P. – Brazil) are iron, aluminium and silicon oxides. It has been determined that the average particle diameter for this red mud is between 0.05 and 0.002mm. It is observed that a decrease in the percentage of smaller particles occurs at temperatures greater than 400°C. This observation corresponds with the thermal analysis and X-ray diffraction (XRD) data, which illustrate the phase transition of goethite to hematite. A 10% mass loss is observed in the thermal analysis patterns due to the hydroxide – oxide phase transitions of iron (primary phase transition) and aluminium (to a lesser extent). The disappearance and appearance of the different phases of iron and aluminium confirms the decomposition reactions proposed by the thermal analysis data. This Brazilian red mud has been classified as mesoporous at all temperatures except between 400 and 500°C where the classification changes to micro/mesoporous.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Global warming can have a significant impact on building energy performance and indoor thermal environment, as well as the health and productivity of people living and working inside them. Through the building simulation technique, this paper investigates the adaptation potential of different selections of building physical properties to increased outdoor temperature in Australia. It is found that overall, an office building with lower insulation level, smaller window to wall ratio and/or a glass type with lower shading coefficient, and lower internal load density will have the effect of lowering building cooling load and total energy use, and therefore have a better potential to adapt to the warming external climate. Compared with clear glass, it is shown that the use of reflective glass for the sample building with WWR being 0.5 reduces the building cooling load by more than 12%. A lower internal load can also have a significant impact on the reduction of building cooling load, as well as the building energy use. Through the comparison of results between current and future weather scenarios, it is found that the patterns found in the current weather scenario also exist in the future weather scenarios, but to a smaller extent.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Several studies of the surface effect on bending properties of a nanowire (NW) have been conducted. However, these analyses are mainly based on theoretical predictions, and there is seldom integration study in combination between theoretical predictions and simulation results. Thus, based on the molecular dynamics (MD) simulation and different modified beam theories, a comprehensive theoretical and numerical study for bending properties of nanowires considering surface/intrinsic stress effects and axial extension effect is conducted in this work. The discussion begins from the Euler-Bernoulli beam theory and Timoshenko beam theory augmented with surface effect. It is found that when the NW possesses a relatively small cross-sectional size, these two theories cannot accurately interpret the true surface effect. The incorporation of axial extension effect into Euler-Bernoulli beam theory provides a nonlinear solution that agrees with the nonlinear-elastic experimental and MD results. However, it is still found inaccurate when the NW cross-sectional size is relatively small. Such inaccuracy is also observed for the Euler-Bernoulli beam theory augmented with both contributions from surface effect and axial extension effect. A comprehensive model for completely considering influences from surface stress, intrinsic stress, and axial extension is then proposed, which leads to good agreement with MD simulation results. It is thus concluded that, for NWs with a relatively small cross-sectional size, a simple consideration of surface stress effect is inappropriate, and a comprehensive consideration of the intrinsic stress effect is required.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Based on the molecular dynamics (MD) method, the single-crystalline copper nanowire with different surface defects is investigated through tension simulation. For comparison, the MD tension simulations of perfect nanowire are firstly carried out under different temperatures, strain rates, and sizes. It has concluded that the surface-volume ratio significantly affects the mechanical properties of nanowire. The surface defects on nanowires are then systematically studied in considering different defect orientation and distribution. It is found that the Young’s modulus is insensitive of surface defects. However, the yield strength and yield point show a significant decrease due to the different defects. Different defects are observed to serve as a dislocation source.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

20 and 26 S proteasomes were isolated from rat liver. The procedure developed for the 26 S proteasome resulted in greatly improved yields compared with previously published methods. A comparison of the kinetic properties of 20 and 26 S proteasomes showed significant differences in the kinetic characteristics with certain substrates and differences in the effects of a protein substrate on peptidase activity. Observed differences in the kinetics of peptidylglutamyl peptide hydrolase activity suggest that the 26 S complex cannot undergo the conformational changes of 20 S proteasomes at high concentrations of the substrate benzyloxycarbonyl (Z) -Leu-Leu-Glu-b-naphthylamide. Various inhibitors that differentially affect the trypsin-like and chymotrypsin-like activities have been identified. Ala-Ala-Phe-chloromethyl (CH2Cl) inhibits chymotrypsin-like activity assayed with succinyl (Suc) -Leu-Leu-Val-Tyr-AMC, but surprisingly not hydrolysis of Ala-Ala-Phe-7-amido-4-methylcoumarin (AMC). Tyr-Gly-Arg-CH2Cl inhibits Suc-Leu-Leu-Val-Tyr-AMC hydrolysis as well as trypsinlike activity measured with t-butoxycarbonyl (Boc) -Leu-Ser-Thr-Arg-AMC, while Z-Phe-Gly-Tyr-diazomethyl (CHN2) was found to inhibit only the two chymotrypsin- like activities. Radiolabeled forms of peptidyl chloromethane and peptidyl diazomethane inhibitors, [3H]acetyl-Ala-Ala-Phe-CH2Cl, [3H]acetyland radioiodinated Tyr-Gly-Arg-CH2Cl, and Z-Phe-Gly- Tyr-(125I-CHN2), have been used to identify catalytic components associated with each of the three peptidase activities. In each case, incorporation of the label could be blocked by prior treatment of the proteasomes with known active site-directed inhibitors, calpain inhibitor 1 or 3,4-dichloroisocoumarin. Subunits of labeled proteasomes were separated either by reverse phase-HPLC and SDS-polyacrylamide gel electrophoresis or by twodimensional polyacrylamide gel electrophoresis followed by autoradiography/fluorography and immunoblotting with subunit-specific antibodies. In each case, label was found to be incorporated into subunits C7, MB1, and LMP7 but in different relative amounts depending on the inhibitor used, consistent with the observed effects on the different peptidase activities. The results strongly suggest a relationship between trypsin-like activity and chymotrypsin-like activity. They also help to relate the different subunits of the complex to the assayed multicatalytic endopeptidase activities

Relevância:

20.00% 20.00%

Publicador:

Resumo:

THERE is an increasing need for biodegradable plastics because they are environmentally friendly and can replace petroleum-based non-degradable plastics which pollute the environment. Starch-derived films reinforced with sugar cane bagasse fibre, which are biodegradable, have been prepared and characterised by gravimetric analysis for moisture uptake, X-ray powder diffraction for crystallinity, and tensile testing for mechanical properties. Results have shown that the addition of bagasse fibre (5 wt%, 10 wt% or 20 wt%) to either (modified) potato starch (Soluble starch) or hydroxypropylated maize starch reduced moisture uptake by up to 30% at 58% relative humidity (RH). Also, the tensile strength and the Young’s Modulus increased up to 63% and 80% respectively, with the maximum value obtained with 5 wt% fibre at 58% RH. However, the tensile strain of the films significantly decreased by up to 84%. The results have been explained based on the crystallinity of the films and the intrinsic properties of starch and bagasse fibres.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Based on the molecular dynamics (MD) simulation and the classical Euler-Bernoulli beam theory, a fundamental study of the vibrational performance of the Ag nanowire (NW) is carried out. A comprehensive analysis of the quality (Q)-factor, natural frequency, beat vibration, as well as high vibration mode is presented. Two excitation approaches, i.e., velocity excitation and displacement excitation, have been successfully implemented to achieve the vibration of NWs. Upon these two kinds of excitations, consistent results are obtained, i.e., the increase of the initial excitation amplitude will lead to a decrease to the Q-factor, and moderate plastic deformation could increase the first natural frequency. Meanwhile, the beat vibration driven by a single relatively large excitation or two uniform excitations in both two lateral directions is observed. It is concluded that the nonlinear changing trend of external energy magnitude does not necessarily mean a nonconstant Q-factor. In particular, the first order natural frequency of the Ag NW is observed to decrease with the increase of temperature. Furthermore, comparing with the predictions by Euler- Bernoulli beam theory, the MD simulation provides a larger and smaller first vibration frequencies for the clamped-clamped and clamped-free thin Ag NWs, respectively. Additionally, for thin NWs, the first order natural frequency exhibits a parabolic relationship with the excitation magnitudes. The frequencies of the higher vibration modes tend to be low in comparison to Euler-Bernoulli beam theory predictions. A combined initial excitation is proposed which is capable to drive the NW under a multi-mode vibration and arrows the coexistence of all the following low vibration modes. This work sheds lights on the better understanding of the mechanical properties of NWs and benefits the increasing utilities of NWs in diverse nano-electronic devices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Determining the optimal of black-start strategies is very important for speeding the restoration speed of a power system after a global blackout. Most existing black-start decision-making methods are based on the assumption that all indexes are independent of each other, and little attention has been paid to the group decision-making method which is more reliable. Given this background, the intuitionistic fuzzy set and further intuitionistic fuzzy Choquet integral operator are presented, and a black-start decision-making method based on this integral operator is presented. Compared to existing methods, the proposed algorithm cannot only deal with the relevance among the indexes, but also overcome some shortcomings of the existing methods. Finally, an example is used to demonstrate the proposed method. © 2012 The Institution of Engineering and Technology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanowires (NWs) have attracted intensive researches owing to the broad applications that arise from their remarkable properties. Over the last decade, immense numerical studies have been conducted for the numerical investigation of mechanical properties of NWs. Among these numerical simulations, the molecular dynamics (MD) plays a key role. Herein we present a brief review on the current state of the MD investigation of nanowires. Emphasis will be placed on the FCC metal NWs, especially the Cu NWs. MD investigations of perfect NWs’ mechanical properties under different deformation conditions including tension, compression, torsion and bending are firstly revisited. Following in succession, the studies for defected NWs including the defects of twin boundaries (TBs) and pre-existing defects are discussed. The different deformation mechanism incurred by the presentation of defects is explored and discussed. This review reveals that the numerical simulation is an important tool to investigate the properties of NWs. However, the substantial gaps between the experimental measurements and MD results suggest the urgent need of multi-scale simulation technique.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mechanically well-defined stabilization systems have only recently become available, providing standardized conditions for studying the role of the mechanical environment on mouse bone fracture healing. The aim of this study was to characterize the time course of strength recovery and callus development of mouse femoral osteotomies stabilized with either low or high flexibility (in bending and torsion) internal fixation plates. Animals were euthanized and femora excised at 14, 21, and 28 days post-osteotomy for microCT analysis and torsional strength testing. While a larger mineralized callus was observed in osteotomies under more flexible conditions at all time points, the earlier bridging of the mineralized callus under less flexible conditions by 1 week resulted in an earlier recovery of torsional strength in mice stabilized with low flexibility fixation. Ultimate torque values for these bones were significantly higher at 14 and 21 days post-osteotomy compared to bones with the more flexible stabilization. Our study confirms the high reproducibility of the results that are achieved with this new implant system, therefore making it ideal for studying the influence of the mechanical environment on murine fracture healing under highly standardized conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For many years, computer vision has lured researchers with promises of a low-cost, passive, lightweight and information-rich sensor suitable for navigation purposes. The prime difficulty in vision-based navigation is that the navigation solution will continually drift with time unless external information is available, whether it be cues from the appearance of the scene, a map of features (whether built online or known a priori), or from an externally-referenced sensor. It is not merely position that is of interest in the navigation problem. Attitude (i.e. the angular orientation of a body with respect to a reference frame) is integral to a visionbased navigation solution and is often of interest in its own right (e.g. flight control). This thesis examines vision-based attitude estimation in an aerospace environment, and two methods are proposed for constraining drift in the attitude solution; one through a novel integration of optical flow and the detection of the sky horizon, and the other through a loosely-coupled integration of Visual Odometry and GPS position measurements. In the first method, roll angle, pitch angle and the three aircraft body rates are recovered though a novel method of tracking the horizon over time and integrating the horizonderived attitude information with optical flow. An image processing front-end is used to select several candidate lines in a image that may or may not correspond to the true horizon, and the optical flow is calculated for each candidate line. Using an Extended Kalman Filter (EKF), the previously estimated aircraft state is propagated using a motion model and a candidate horizon line is associated using a statistical test based on the optical flow measurements and location of the horizon in the image. Once associated, the selected horizon line, along with the associated optical flow, is used as a measurement to the EKF. To evaluate the accuracy of the algorithm, two flights were conducted, one using a highly dynamic Uninhabited Airborne Vehicle (UAV) in clear flight conditions and the other in a human-piloted Cessna 172 in conditions where the horizon was partially obscured by terrain, haze and smoke. The UAV flight resulted in pitch and roll error standard deviations of 0.42° and 0.71° respectively when compared with a truth attitude source. The Cessna 172 flight resulted in pitch and roll error standard deviations of 1.79° and 1.75° respectively. In the second method for estimating attitude, a novel integrated GPS/Visual Odometry (GPS/VO) navigation filter is proposed, using a structure similar to a classic looselycoupled GPS/INS error-state navigation filter. Under such an arrangement, the error dynamics of the system are derived and a Kalman Filter is developed for estimating the errors in position and attitude. Through similar analysis to the GPS/INS problem, it is shown that the proposed filter is capable of recovering the complete attitude (i.e. pitch, roll and yaw) of the platform when subjected to acceleration not parallel to velocity for both the monocular and stereo variants of the filter. Furthermore, it is shown that under general straight line motion (e.g. constant velocity), only the component of attitude in the direction of motion is unobservable. Numerical simulations are performed to demonstrate the observability properties of the GPS/VO filter in both the monocular and stereo camera configurations. Furthermore, the proposed filter is tested on imagery collected using a Cessna 172 to demonstrate the observability properties on real-world data. The proposed GPS/VO filter does not require additional restrictions or assumptions such as platform-specific dynamics, map-matching, feature-tracking, visual loop-closing, gravity vector or additional sensors such as an IMU or magnetic compass. Since no platformspecific dynamics are required, the proposed filter is not limited to the aerospace domain and has the potential to be deployed in other platforms such as ground robots or mobile phones.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mechanical vibration properties of single actin filaments from 50 to 288 nm are investigated by the molecular dynamics simulation in this study. The natural frequencies obtained from the molecular simulations agree with those obtained from the analytical solution of the equivalent Euler–Bernoulli beam model. Through the convergence study of the mechanical properties with respect to the filament length, it was found that the Euler–Bernoulli beam model can only be reliably used when the single actin filament is of the order of hundreds of nanometre scale. This molecular investigation not only provides the evidence for the use of the continuum beam model in characterising the mechanical properties of single actin filaments, but also clarifies the criteria for the effective use of the Euler–Bernoulli beam model.