173 resultados para Integral equations.
Resumo:
This paper gives a modification of a class of stochastic Runge–Kutta methods proposed in a paper by Komori (2007). The slight modification can reduce the computational costs of the methods significantly.
Resumo:
Anthropometry is a simple and cost-efficient method for the assessment of body composition. However prediction equations to estimate body composition using anthropometry should be ‘population-specific’. Most popular body composition prediction equations for Japanese females were proposed more than 40 years ago and there is some concern regarding their usefulness in Japanese females living today. The aim of this study was to compare percentage body fat (%BF) estimated from anthropometry and dual energy x-ray absorptiometry (DXA) to examine the applicability of commonly used prediction equations in young Japanese females. Body composition of 139 Japanese females aged between 18 and 27 years of age (BMI range: 15.1–29.1 kg/m2) was measured using whole-body DXA (Lunar DPX-LIQ) scans. From anthropometric measurements %BF was estimated using four equations developed from Japanese females. The results showed that the traditionally employed prediction equations for anthropometry significantly (p<0.01) underestimate %BF of young Japanese females and therefore are not valid for the precise estimation of body composition. New %BF prediction equations were proposed from the DXA and anthropometry results. Application of the proposed equations may assist in more accurate assessment of body fatness in Japanese females living today.
Resumo:
Radial Hele-Shaw flows are treated analytically using conformal mapping techniques. The geometry of interest has a doubly-connected annular region of viscous fluid surrounding an inviscid bubble that is either expanding or contracting due to a pressure difference caused by injection or suction of the inviscid fluid. The zero-surface-tension problem is ill-posed for both bubble expansion and contraction, as both scenarios involve viscous fluid displacing inviscid fluid. Exact solutions are derived by tracking the location of singularities and critical points in the analytic continuation of the mapping function. We show that by treating the critical points, it is easy to observe finite-time blow-up, and the evolution equations may be written in exact form using complex residues. We present solutions that start with cusps on one interface and end with cusps on the other, as well as solutions that have the bubble contracting to a point. For the latter solutions, the bubble approaches an ellipse in shape at extinction.
Resumo:
A standard method for the numerical solution of partial differential equations (PDEs) is the method of lines. In this approach the PDE is discretised in space using �finite di�fferences or similar techniques, and the resulting semidiscrete problem in time is integrated using an initial value problem solver. A significant challenge when applying the method of lines to fractional PDEs is that the non-local nature of the fractional derivatives results in a discretised system where each equation involves contributions from many (possibly every) spatial node(s). This has important consequences for the effi�ciency of the numerical solver. First, since the cost of evaluating the discrete equations is high, it is essential to minimise the number of evaluations required to advance the solution in time. Second, since the Jacobian matrix of the system is dense (partially or fully), methods that avoid the need to form and factorise this matrix are preferred. In this paper, we consider a nonlinear two-sided space-fractional di�ffusion equation in one spatial dimension. A key contribution of this paper is to demonstrate how an eff�ective preconditioner is crucial for improving the effi�ciency of the method of lines for solving this equation. In particular, we show how to construct suitable banded approximations to the system Jacobian for preconditioning purposes that permit high orders and large stepsizes to be used in the temporal integration, without requiring dense matrices to be formed. The results of numerical experiments are presented that demonstrate the effectiveness of this approach.
Resumo:
Ion channels are membrane proteins that open and close at random and play a vital role in the electrical dynamics of excitable cells. The stochastic nature of the conformational changes these proteins undergo can be significant, however current stochastic modeling methodologies limit the ability to study such systems. Discrete-state Markov chain models are seen as the "gold standard," but are computationally intensive, restricting investigation of stochastic effects to the single-cell level. Continuous stochastic methods that use stochastic differential equations (SDEs) to model the system are more efficient but can lead to simulations that have no biological meaning. In this paper we show that modeling the behavior of ion channel dynamics by a reflected SDE ensures biologically realistic simulations, and we argue that this model follows from the continuous approximation of the discrete-state Markov chain model. Open channel and action potential statistics from simulations of ion channel dynamics using the reflected SDE are compared with those of a discrete-state Markov chain method. Results show that the reflected SDE simulations are in good agreement with the discrete-state approach. The reflected SDE model therefore provides a computationally efficient method to simulate ion channel dynamics while preserving the distributional properties of the discrete-state Markov chain model and also ensuring biologically realistic solutions. This framework could easily be extended to other biochemical reaction networks. © 2012 American Physical Society.
Resumo:
Determining the optimal of black-start strategies is very important for speeding the restoration speed of a power system after a global blackout. Most existing black-start decision-making methods are based on the assumption that all indexes are independent of each other, and little attention has been paid to the group decision-making method which is more reliable. Given this background, the intuitionistic fuzzy set and further intuitionistic fuzzy Choquet integral operator are presented, and a black-start decision-making method based on this integral operator is presented. Compared to existing methods, the proposed algorithm cannot only deal with the relevance among the indexes, but also overcome some shortcomings of the existing methods. Finally, an example is used to demonstrate the proposed method. © 2012 The Institution of Engineering and Technology.
Resumo:
Fractional partial differential equations with more than one fractional derivative term in time, such as the Szabo wave equation, or the power law wave equation, describe important physical phenomena. However, studies of these multi-term time-space or time fractional wave equations are still under development. In this paper, multi-term modified power law wave equations in a finite domain are considered. The multi-term time fractional derivatives are defined in the Caputo sense, whose orders belong to the intervals (1, 2], [2, 3), [2, 4) or (0, n) (n > 2), respectively. Analytical solutions of the multi-term modified power law wave equations are derived. These new techniques are based on Luchko’s Theorem, a spectral representation of the Laplacian operator, a method of separating variables and fractional derivative techniques. Then these general methods are applied to the special cases of the Szabo wave equation and the power law wave equation. These methods and techniques can also be extended to other kinds of the multi term time-space fractional models including fractional Laplacian.
Resumo:
In this paper, the multi-term time-fractional wave diffusion equations are considered. The multiterm time fractional derivatives are defined in the Caputo sense, whose orders belong to the intervals [0,1], [1,2), [0,2), [0,3), [2,3) and [2,4), respectively. Some computationally effective numerical methods are proposed for simulating the multi-term time-fractional wave-diffusion equations. The numerical results demonstrate the effectiveness of theoretical analysis. These methods and techniques can also be extended to other kinds of the multi-term fractional time-space models with fractional Laplacian.
Resumo:
In this paper, a method of separating variables is effectively implemented for solving a time-fractional telegraph equation (TFTE) in two and three dimensions. We discuss and derive the analytical solution of the TFTE in two and three dimensions with nonhomogeneous Dirichlet boundary condition. This method can be extended to other kinds of the boundary conditions.
Resumo:
Generalized fractional partial differential equations have now found wide application for describing important physical phenomena, such as subdiffusive and superdiffusive processes. However, studies of generalized multi-term time and space fractional partial differential equations are still under development. In this paper, the multi-term time-space Caputo-Riesz fractional advection diffusion equations (MT-TSCR-FADE) with Dirichlet nonhomogeneous boundary conditions are considered. The multi-term time-fractional derivatives are defined in the Caputo sense, whose orders belong to the intervals [0, 1], [1, 2] and [0, 2], respectively. These are called respectively the multi-term time-fractional diffusion terms, the multi-term time-fractional wave terms and the multi-term time-fractional mixed diffusion-wave terms. The space fractional derivatives are defined as Riesz fractional derivatives. Analytical solutions of three types of the MT-TSCR-FADE are derived with Dirichlet boundary conditions. By using Luchko's Theorem (Acta Math. Vietnam., 1999), we proposed some new techniques, such as a spectral representation of the fractional Laplacian operator and the equivalent relationship between fractional Laplacian operator and Riesz fractional derivative, that enabled the derivation of the analytical solutions for the multi-term time-space Caputo-Riesz fractional advection-diffusion equations. © 2012.
Resumo:
Multi-term time-fractional differential equations have been used for describing important physical phenomena. However, studies of the multi-term time-fractional partial differential equations with three kinds of nonhomogeneous boundary conditions are still limited. In this paper, a method of separating variables is used to solve the multi-term time-fractional diffusion-wave equation and the multi-term time-fractional diffusion equation in a finite domain. In the two equations, the time-fractional derivative is defined in the Caputo sense. We discuss and derive the analytical solutions of the two equations with three kinds of nonhomogeneous boundary conditions, namely, Dirichlet, Neumann and Robin conditions, respectively.
Resumo:
Finding an appropriate linking method to connect different dimensional element types in a single finite element model is a key issue in the multi-scale modeling. This paper presents a mixed dimensional coupling method using multi-point constraint equations derived by equating the work done on either side of interface connecting beam elements and shell elements for constructing a finite element multiscale model. A typical steel truss frame structure is selected as case example and the reduced scale specimen of this truss section is then studied in the laboratory to measure its dynamic and static behavior in global truss and local welded details while the different analytical models are developed for numerical simulation. Comparison of dynamic and static response of the calculated results among different numerical models as well as the good agreement with those from experimental results indicates that the proposed multi-scale model is efficient and accurate.
Resumo:
The Balanced method was introduced as a class of quasi-implicit methods, based upon the Euler-Maruyama scheme, for solving stiff stochastic differential equations. We extend the Balanced method to introduce a class of stable strong order 1. 0 numerical schemes for solving stochastic ordinary differential equations. We derive convergence results for this class of numerical schemes. We illustrate the asymptotic stability of this class of schemes is illustrated and is compared with contemporary schemes of strong order 1. 0. We present some evidence on parametric selection with respect to minimising the error convergence terms. Furthermore we provide a convergence result for general Balanced style schemes of higher orders.
Resumo:
Objectives: To compare measures of fat-free mass (FFM) by three different bioelectrical impedance analysis (BIA) devices and to assess the agreement between three different equations validated in older adult and/or overweight populations. Design: Cross-sectional study. Setting: Orthopaedics ward of Brisbane public hospital, Australia. Participants: Twenty-two overweight, older Australians (72 yr ± 6.4, BMI 34 kg/m2 ± 5.5) with knee osteoarthritis. Measurements: Body composition was measured using three BIA devices: Tanita 300-GS (foot-to-foot), Impedimed DF50 (hand-to-foot) and Impedimed SFB7 (bioelectrical impedance spectroscopy (BIS)). Three equations for predicting FFM were selected based on their ability to be applied to an older adult and/ or overweight population. Impedance values were extracted from the hand-to-foot BIA device and included in the equations to estimate FFM. Results: The mean FFM measured by BIS (57.6 kg ± 9.1) differed significantly from those measured by foot-to-foot (54.6 kg ± 8.7) and hand-to-foot BIA (53.2 kg ± 10.5) (P < 0.001). The mean ± SD FFM predicted by three equations using raw data from hand-to-foot BIA were 54.7 kg ± 8.9, 54.7 kg ± 7.9 and 52.9 kg ± 11.05 respectively. These results did not differ from the FFM predicted by the hand-to-foot device (F = 2.66, P = 0.118). Conclusions: Our results suggest that foot-to-foot and hand-to-foot BIA may be used interchangeably in overweight older adults at the group level but due to the large limits of agreement may lead to unacceptable error in individuals. There was no difference between the three prediction equations however these results should be confirmed within a larger sample and against a reference standard.
Resumo:
In this work we discuss the effects of white and coloured noise perturbations on the parameters of a mathematical model of bacteriophage infection introduced by Beretta and Kuang in [Math. Biosc. 149 (1998) 57]. We numerically simulate the strong solutions of the resulting systems of stochastic ordinary differential equations (SDEs), with respect to the global error, by means of numerical methods of both Euler-Taylor expansion and stochastic Runge-Kutta type.