131 resultados para Impacts
Resumo:
Ripening period refers to a phase of stabilization in sand filters in water treatment systems that follows a new installation or cleaning of the filter. Intermittent wetting and drying, a unique property of stormwater biofilters, would similarly be subjected to a phase of stabilization. Suspended solids, is an important parameter that is often used to monitor the stabilization of sand filters in water treatment systems. Stormwater biofilters however, contain organic material that is added to the filter layer to enhance nitrate removal, the dynamics of which is seldom analysed in stabilization of stormwater biofilters. Therefore, in this study of stormwater biofiltration in addition to suspended solids (Turbidity), organic matter (TOC, DOC, TN and TKN) was also monitored as a parameter for stabilization of the stormwater biofilter. One Perspex bioretention column (94 mm internal diameter) was fabricated with filter layer that contained 8% organic material and fed with tapwater with different antecedent dry days (0 – 40 day) at 100 mL/min. Samples were collected from the outflow at different time intervals between 2 – 150 minutes and were tested for Total Organic Carbon, Dissolved Organic Carbon, Total Nitrogen, Total Kjeldhal Nitrogen and Turbidity. The column was observed to experience two phases of stabilization, one at the beginning of each event that lasted for 30 minutes while the other phase was observed across subsequent events that related to the age of filter.
Resumo:
Amelioration of sodic soils is commonly achieved by applying gypsum, which increases soil hydraulic conductivity by altering soil chemistry. The magnitude of hydraulic conductivity increases expected in response to gypsum applications depends on soil properties including clay content, clay mineralogy, and bulk density. The soil analyzed in this study was a kaolinite rich sodic clay soil from an irrigated area of the Lower Burdekin coastal floodplain in tropical North Queensland, Australia. The impact of gypsum amelioration was investigated by continuously leaching soil columns with a saturated gypsum solution, until the hydraulic conductivity and leachate chemistry stabilized. Extended leaching enabled the full impacts of electrolyte effects and cation exchange to be determined. For the columns packed to 1.4 g/cm3, exchangeable sodium concentrations were reduced from 5.0 ± 0.5 mEq/100 g to 0.41 ± 0.06 mEq/100 g, exchangeable magnesium concentrations were reduced from 13.9 ± 0.3 mEq/100 g to 4.3 ± 2.12 mEq/100 g, and hydraulic conductivity increased to 0.15 ± 0.04 cm/d. For the columns packed to 1.3 g/cm3, exchangeable sodium concentrations were reduced from 5.0 ± 0.5 mEq/100 g to 0.51 ± 0.03 mEq/100 g, exchangeable magnesium concentrations were reduced from 13.9 ± 0.3 mEq/100 g to 0.55 ± 0.36 mEq/100 g, and hydraulic conductivity increased to 0.96 ± 0.53 cm/d. The results of this study highlight that both sodium and magnesium need to be taken into account when determining the suitability of water quality for irrigation of sodic soils and that soil bulk density plays a major role in controlling the extent of reclamation that can be achieved using gypsum applications.
Resumo:
Since 2008, Australian schoolchildren in Years 3, 5, 7 and 9 have sat a series of tests each May designed to assess their attainment of basic skills in literacy and numeracy. These tests are known as the National Assessment Program – Literacy and Numeracy (NAPLAN). In 2010, individual school NAPLAN data were first published on the MySchool website which enables comparisons to be made between individual schools and statistically like schools across Australia. NAPLAN represents the increased centrality of the federal government in education, particularly in regards to education policy. One effect of this has been a recast emphasis of education as an economic, rather than democratic, good. As Reid (2009) suggests, this recasting of education within national productivity agendas mobilises commonsense discourses of accountability and transparency. These are common articles of faith for many involved in education administration and bureaucracy; more and better data, and holding people to account for that data, must improve education...
Resumo:
This report provides an overview of the tornado impact on the safe operation and shutdown of nuclear power plants in the United States. The motivation for this review stems from the damage and failure of the Fukushima nuclear power plant on March 11, 2011. That disaster warrants comparison of the safety measures in place within the global nuclear power industry.
Resumo:
It is well known that the neutralisation of Bayer liquor with seawater causes the precipitation of stable alkaline products and a reduction in pH and dissolved metal concentrations in the effluent. However, there is limited information available on solution chemistry effects on the stability and reaction kinetics of these precipitates. This investigation shows the influence of reactive species (magnesium and calcium) in seawater on precipitate stabilities and volumetric efficiencies during the neutralisation of bauxite refinery residues. Correlations between synthetic seawater solutions and real samples of seawater (filtered seawater, nanofiltered seawater and reverse osmosis brine) have been made. These investigations have been used to confirm that alternative seawater sources can be used to increase the productivity potential of the neutralisation process with minimal implications on the composition and stability of precipitates formed. The volume efficiency of the neutralisation process using synthetic analogues has been shown to be almost directly proportional with the concentration of magnesium. This was further confirmed in the nanofiltered seawater and reverse osmosis brine that showed increases in the efficiency of neutralisation by factors of 3 and 2 compared to seawater, which corresponds with relatively the same increase in the concentration of magnesium in these alternative seawater sources. An assessment of the chemical stability of the precipitates, volumetric efficiency, and discharge water quality have been determined using numerous techniques that include pH, conductivity, inductively coupled plasma optical emission spectroscopy, infrared spectroscopy, thermogravimetric analysis coupled to mass spectrometry and X-ray diffraction. Correlations between synthetic solution compositions and alternative seawater sources have been used to determine if alternative seawater sources are potential substitutes for seawater based on improvements in productivity, implementation costs, savings to operations and environmental benefits.
Impacts of sodic soil amelioration on hydraulic conductivity and deep drainage in the Lower Burdekin
Resumo:
An understanding of the influence of soil chemistry on soil hydraulic properties is of critical importance for the management of sodic soils under irrigation. The hydraulic conductivity of sodic soils has been shown to be affected by properties of the applied solution including pH (Suarez et al. 1984), sodicity and salt concentration (McNeal and Coleman 1966). The changes in soil hydraulic conductivity are the result of changes in the spacing between clay layers in response to changes in soil solution chemistry. While the importance o f soil chemistry in controlling hydraulic conductivity is known, the exact impacts of sodic soil amelioration on hydraulic conductivity and deep drainage at a given location are difficult to predict. This is because the relationships between soil chemical factors and hydraulic conductivity are soil specific and because local site specific factors also need to be considered to determine the actual impacts on deep drainage rates.
Resumo:
Teachers are at the forefront of Information Communication Technology (ICT) use in schools. Teachers face many challenges and competing priorities such as literacy, numeracy and changing curriculum frameworks and are expected to adopt new ICT practices to improve students¿ outcomes. Effective professional development (PD) methods must be identified and implemented. This research examined two core issues: (1) experienced teachers' perceptions of their ICT practices and (2) how PD courses have affected these practices. This case study and its findings has important implications for the implementation of effective PD in schools.
Resumo:
为研究风电并网对互联系统低频振荡的影响,基于完整的双馈风电机组模型,定性分析了两区域互联系统在风电机组并网前后阻尼特性的变化情况.从双馈风电机组并网输送距离、并网容量、互联系统联络线传送功率、是否加装电力系统稳定器等多个方面,多角度分析了风电场并网对互联系统小干扰稳定及低频振荡特性的影响.之后,以两个包括两个区域的电力系统为例,进行了系统的计算分析和比较.结果表明,有双馈风电机组接入的互联电力系统,在不同运行模式下,双馈风电机组的并网输送距离、出力水平、联络线传送功率对低频振荡模式的影响在趋势和程度上均有显著差异,这样在对风电场进行入网规划、设计和运行时就需要综合考虑这些因素的影响.
Resumo:
The effects of tillage practises and the methods of chemical application on atrazine and alachlor losses through run-off were evaluated for five treatments: conservation (untilled) and surface (US), disk and surface, plow and surface, disk and preplant-incorporated, and plow and preplant-incorporated treatments. A rainfall simulator was used to create 63.5 mm h-1 of rainfall for 60 min and 127 mm h-1 for 15 min. Rainfall simulation occurred 24-36 h after chemical application. There was no significant difference in the run-off volume among the treatments but the untilled treatment significantly reduced erosion loss. The untilled treatments had the highest herbicide concentration and the disk treatments were higher than the plow treatments. The surface treatments showed a higher concentration than the incorporated treatments. The concentration of herbicides in the water decreased with time. Among the experimental sites, the one with sandy loam soil produced the greatest losses, both in terms of the run-off volume and herbicide loss. The US treatments had the highest loss and the herbicide incorporation treatments had smaller losses through run-off as the residue cover was effective in preventing herbicide losses. Incorporation might be a favorable method of herbicide application to reduce the herbicide losses by run-off.
Resumo:
With the scope of Chinese diaspora in Australia, this paper theorises the impacts of digitally mediated social interaction on diasporic identity formation in the new media landscape. People’s identity is the outcome of their social interactions with other individuals. In the new media landscape, digital media technologies are changing the way in which people communicate with others. On one hand, space and time are unprecedentedly compressed by media technologies so people can maintain more frequent and instant connections with others than before. On the other hand, the digital media technologies have constructed a virtual social space that might withdraw people from their physical social interactions. As we witness today, our social interactions are increasing digitally mediated, in the forms of posts and comments in social network sites, as well as the messages in social apps. As to the diasporic groups, this new media landscape is presenting a challenge to their identity formation. They physically live in the host countries but still keep close social and cultural connections with their homelands. Facilitated by digital media technologies, they are facing two platforms in which they can practice different identity performances: one is the digitally mediated social network; the other is the physical social network. In the case of Chinese diaspora, the situation is more complex due to the language factor and media censorship in Mainland China, which will be articulated in the main text. This paper aims to fill a gap between media studies and diaspora research. Most of existing research on the relationship between diasporic identity and media primarily focuses on the development of ethnic media institutions, and the production and consumption of ethnic media in the pre-digital media context. However, the process of globalisation and digital media technologies are increasing the homogeneity and hybridity of media content worldwide. In this new context, attributing the formation of different identities to the consumption of media content is arguable to some extent. Therefore, the overlapped area of new media studies and diaspora research still has space deserves further investigation.
Resumo:
This report provides an evaluation of the implementation of the Polluter Pays Principle (PPP) – a principle of international environmental law – in the context of pollution from sugarcane farming affecting Australia’s Great Barrier Reef (GBR). The research was part of an experiment to test methods for evaluating the effectiveness of environmental laws. Overall, we found that whilst the PPP is reflected to a limited extent in Australian law (more so in Queensland law, than at the national level), the behaviour one might expect in terms of implementing the principle was largely inadequate. Evidence of a longer term, explicit commitment to the PPP was particularly weak.
Resumo:
Crash cushions are devices deployed on the road network in order to shield fixed roadside hazards and the non-crashworthy ends of road safety barriers. However crash cushions vary in terms of configuration and operation, meaning that different devices may also vary in terms of ability to mitigate occupant risk. In this study, data derived from crash testing of eleven redirective crash cushions is used as the base input to a numerical procedure for calculation of occupant risk indicators Occupant Impact Velocity (OIV), Occupant Ridedown Acceleration (ORA) and longitudinal Acceleration Severity Index (ASI) for a range of simulated impacting vehicles (mass 800 kg to 2,500 kg) impacting each crash cushion at a range of impact speeds (18 m/s to 32 m/s). The results may be interpreted as demonstrating firstly that enhanced knowledge of the performance of a device over a range of impact conditions, i.e., beyond the crash testing, may assist in determining the crash cushion most suited to a particular application; secondly that a more appropriate conformance test for occupant risk would be a frontal impact by a small (light) vehicle travelling parallel to and aligned with the centreline of the crash cushion; and thirdly that current documented numerical procedures for calculating occupant risk indicators may require review.
Resumo:
Internationally, marine biodiversity conservation objectives are having an increasing influence on the management of commercial fisheries. While this is largely being implemented through Marine Protected Areas (MPAs) other management measures, such as market based instruments (MBIs), have proved to be effective at managing target species catch in fisheries and reducing environmental impacts in industries such as mining and tourism. Market-based management measures aim to mitigate the impacts of activities by better aligning the incentives their participants face with the objectives of management, changing their behavior as a consequence. In this paper, we review the potential of MBIs as management tools to mitigate undesirable environmental impacts associated with commercial fishing. Where they exist, examples of previous applications are described and the factors that influence their applicability and effectiveness are discussed. Several fishing methods and impacts are considered and suggest that whilst no single approach is most appropriate in all circumstances either replacing or complementing existing management arrangements with MBIs has the potential to improve environmental performance. This has a number of implications. From the environmental perspective they should enable levels of undesirable impacts such as damage to sensitive habitat or the bycatch of protected species of turtles, marine mammals, and seabirds to be reduced. The increased flexibility MBIs allow industry when developing solutions also has the potential to reduce costs to both the industry and managers, improving the cost-effectiveness of regulation as a result. Further, in the increasingly relevant case of MPAs the need for publicly funded compensation, often paid to industry when vessels are excluded from grounds, may also be significantly reduced if improved environmental performance makes it possible for some industry members to continue operating.
Resumo:
This study uses agent based modelling to simulate the worker interactions within a workplace and to investigate how the interactions can have impact on the workplace dynamics. Two new models (Bounded Confidence with Bias model and Relative Agreement with Bias model) are built based on the theoretical foundation of two existing models. A new factor, namely bias, is added into the new models which raises several issues to be studied.
Resumo:
Groundwater tables are rising beneath irrigated fields in some areas of the Lower Burdekin in North Queensland, Australia. The soils where this occurs are predominantly sodic clay soils with low hydraulic conductivities. Many of these soils have been treated by applying gypsum or by increasing the salinity of irrigation water by mixing saline groundwater with fresh river water. While the purpose of these treatments is to increase infiltration into the surface soils and improve productivity of the root zone, it is thought that the treatments may have altered the soil hydraulic properties well below the root zone leading to increased groundwater recharge and rising water tables. In this paper we discuss the use of column experiments and HYDRUS modelling, with major ion reaction and transport and soil water chemistry-dependent hydraulic conductivity, to assess the likely depth, magnitude and timing of the impacts of surface soil amelioration on soil hydraulic properties below the root zone and hence groundwater recharge. In the experiments, columns of sodic clays from the Lower Burdekin were leached for extended periods of time with either gypsum solutions or mixed cation salt solutions and change s in hydraulic conductivity were measured. Leaching with a gypsum solution for an extended time period, until the flow rate stabilised, resulted in an approximately twenty fold increase in the hydraulic conductivity when compared with a low salinity, mixed cation solution. HYDRUS modelling was used to high light the role of those factors which might influence the impacts of soil treatment, particularly at depth, including the large amounts of rain during the relatively short wet season and the presence of thick low permeability clay layers.