221 resultados para Hybrid layers
Resumo:
We consider a hybrid model, created by coupling a continuum and an agent-based model of infectious disease. The framework of the hybrid model provides a mechanism to study the spread of infection at both the individual and population levels. This approach captures the stochastic spatial heterogeneity at the individual level, which is directly related to deterministic population level properties. This facilitates the study of spatial aspects of the epidemic process. A spatial analysis, involving counting the number of infectious agents in equally sized bins, reveals when the spatial domain is nonhomogeneous.
Resumo:
Ambient media architecture can provide place-based collaborative learning experiences and pathways for social interactions that would not be otherwise possible. This paper is concerned with ways of enhancing peer-to-peer learning affordances in library spaces; how can the library facilitate the community of library users to learn from each other? We report on the findings of a study that employed a participatory design method where participants were asked to reflect and draw places, social networks, and activities that they use to work (be creative, productive), play (have fun, socialize, be entertained), and learn (acquire new information, knowledge, or skills). The results illustrate how informal learning – learning outside the formal education system – is facilitated by a personal selection of physical and socio-cultural environments, as well as online tools, platforms, and networks. This paper sheds light on participants’ individually curated ecologies of their work, play, and learning related networks and the hybrid (physical and digital) nature of these places. These insights reveal opportunities for ambient media architecture to increase awareness of and connections between people’s hybrid personal learning environments.
Resumo:
The benefits of applying tree-based methods to the purpose of modelling financial assets as opposed to linear factor analysis are increasingly being understood by market practitioners. Tree-based models such as CART (classification and regression trees) are particularly well suited to analysing stock market data which is noisy and often contains non-linear relationships and high-order interactions. CART was originally developed in the 1980s by medical researchers disheartened by the stringent assumptions applied by traditional regression analysis (Brieman et al. [1984]). In the intervening years, CART has been successfully applied to many areas of finance such as the classification of financial distress of firms (see Frydman, Altman and Kao [1985]), asset allocation (see Sorensen, Mezrich and Miller [1996]), equity style timing (see Kao and Shumaker [1999]) and stock selection (see Sorensen, Miller and Ooi [2000])...
Resumo:
A fundamental problem faced by stereo vision algorithms is that of determining correspondences between two images which comprise a stereo pair. This paper presents work towards the development of a new matching algorithm, based on the rank transform. This algorithm makes use of both area-based and edge-based information, and is therefore referred to as a hybrid algorithm. In addition, this algorithm uses a number of matching constraints, including the novel rank constraint. Results obtained using a number of test pairs show that the matching algorithm is capable of removing most invalid matches. The accuracy of matching in the vicinity of edges is also improved.
Resumo:
This 45 minute non-verbal intermedial performance for children was adapted from the picture book I authored of the same name. The process involved writing and re-writing text and music with the result being a new draft of both script and soundtrack. Part of the judging process for the award the script was nominated for involved a playreading, which offered a particular challenge to the researcher in terms of composition and playwriting. How can a script and soundtrack for a non-verbal, intermedial work adapt and innovate the within the formal and practical constraints of the traditional ‘playreading’? This project’s emphasis on nestling intermediality within ostensibly traditional theatrical constraints and processes draws on concepts of musicalisation, identified by Varopolou. (in Lehmann 2006:91) Certain ‘musical moments’ in the piece echoed Ross Brown’s (2010) acoustemological concepts of sonification of everyday life, and the process involved dynamic curation of ‘music under’ for emotional effect, avoiding cinematic clichés and reaching for connections between music and emotion characterized by scholars such as Juslin and Sloboda (2001) The resulting performance was a hybrid of playreading and slideshow, supported by an original soundtrack of ‘music under’ (pre-recorded, but ‘DJ’ed’ live) as well as text-driven moments where music and sound were foregrounded. Research contribution This iteration of The Empty City shows that the tradition of the playreading can be a playful space where even the multiple layers of an intermedial performance text can be represented. The Empty City was a finalist in the 2012-13 Queensland Premier’s Drama Award. A ticketed public playreading of the script was held in the Queensland Theatre Company’s Bille Brown Studio on the 28th of July 2012 alongside the other finalists.
A hybrid simulation framework to assess the impact of renewable generators on a distribution network
Resumo:
With an increasing number of small-scale renewable generator installations, distribution network planners are faced with new technical challenges (intermittent load flows, network imbalances…). Then again, these decentralized generators (DGs) present opportunities regarding savings on network infrastructure if installed at strategic locations. How can we consider both of these aspects when building decision tools for planning future distribution networks? This paper presents a simulation framework which combines two modeling techniques: agent-based modeling (ABM) and particle swarm optimization (PSO). ABM is used to represent the different system units of the network accurately and dynamically, simulating over short time-periods. PSO is then used to find the most economical configuration of DGs over longer periods of time. The infrastructure of the framework is introduced, presenting the two modeling techniques and their integration. A case study of Townsville, Australia, is then used to illustrate the platform implementation and the outputs of a simulation.
Resumo:
Despite the compelling case for moving towards cloud computing, the upstream oil & gas industry faces several technical challenges—most notably, a pronounced emphasis on data security, a reliance on extremely large data sets, and significant legacy investments in information technology (IT) infrastructure—that make a full migration to the public cloud difficult at present. Private and hybrid cloud solutions have consequently emerged within the industry to yield as much benefit from cloud-based technologies as possible while working within these constraints. This paper argues, however, that the move to private and hybrid clouds will very likely prove only to be a temporary stepping stone in the industry’s technological evolution. By presenting evidence from other market sectors that have faced similar challenges in their journey to the cloud, we propose that enabling technologies and conditions will probably fall into place in a way that makes the public cloud a far more attractive option for the upstream oil & gas industry in the years ahead. The paper concludes with a discussion about the implications of this projected shift towards the public cloud, and calls for more of the industry’s services to be offered through cloud-based “apps.”
Resumo:
The aim of this paper is to implement a Game-Theory based offline mission path planner for aerial inspection tasks of large linear infrastructures. Like most real-world optimisation problems, mission path planning involves a number of objectives which ideally should be minimised simultaneously. The goal of this work is then to develop a Multi-Objective (MO) optimisation tool able to provide a set of optimal solutions for the inspection task, given the environment data, the mission requirements and the definition of the objectives to minimise. Results indicate the robustness and capability of the method to find the trade-off between the Pareto-optimal solutions.
Resumo:
This paper present an efficient method using system state sampling technique in Monte Carlo simulation for reliability evaluation of multi-area power systems, at Hierarchical Level One (HLI). System state sampling is one of the common methods used in Monte Carlo simulation. The cpu time and memory requirement can be a problem, using this method. Combination of analytical and Monte Carlo method known as Hybrid method, as presented in this paper, can enhance the efficiency of the solution. Incorporation of load model in this study can be utilised either by sampling or enumeration. Both cases are examined in this paper, by application of the methods on Roy Billinton Test System(RBTS).
Resumo:
In this paper, a hybrid smoothed finite element method (H-SFEM) is developed for solid mechanics problems by combining techniques of finite element method (FEM) and Node-based smoothed finite element method (NS-FEM) using a triangular mesh. A parameter is equipped into H-SFEM, and the strain field is further assumed to be the weighted average between compatible stains from FEM and smoothed strains from NS-FEM. We prove theoretically that the strain energy obtained from the H-SFEM solution lies in between those from the compatible FEM solution and the NS-FEM solution, which guarantees the convergence of H-SFEM. Intensive numerical studies are conducted to verify these theoretical results and show that (1) the upper and lower bound solutions can always be obtained by adjusting ; (2) there exists a preferable at which the H-SFEM can produce the ultrasonic accurate solution.
Resumo:
Opening up a band gap and finding a suitable substrate material are two big challenges for building graphene-based nanodevices. Using state-of-the-art hybrid density functional theory incorporating long range dispersion corrections, we investigate the interface between optically active graphitic carbon nitride (g-C3N4) and electronically active graphene. We find an inhomogeneous planar substrate (g-C3N4) promotes electronrich and hole-rich regions, i.e., forming a well-defined electron−hole puddle, on the supported graphene layer. The composite displays significant charge transfer from graphene to the g-C3N4 substrate, which alters the electronic properties of both components. In particular, the strong electronic coupling at the graphene/g-C3N4 interface opens a 70 meV gap in g-C3N4-supported graphene, a feature that can potentially allow overcoming the graphene’s band gap hurdle in constructing field effect transistors. Additionally, the 2-D planar structure of g-C3N4 is free of dangling bonds, providing an ideal substrate for graphene to sit on. Furthermore, when compared to a pure g-C3N4 monolayer, the hybrid graphene/g-C3N4 complex displays an enhanced optical absorption in the visible region, a promising feature for novel photovoltaic and photocatalytic applications.
Resumo:
We demonstrated for the first time by ab initio density functional calculation and molecular dynamics simulation that C0.5(BN)0.5 armchair single-walled nanotubes (NT) are gapless semiconductors and can be spontaneously formed via the hybrid connection of graphene/BN Nanoribbons (GNR/BNNR) at room temperature. The direct synthesis of armchair C0.5(BN)0.5 via the hybrid connection of GNR/BNNR is predicted to be both thermodynamically and dynamically stable. Such novel armchair C0.5(BN)0.5 NTs possess enhanced conductance as that observed in GNRs. Additionally, the zigzag C0.5(BN)0.5 SWNTs are narrow band gap semiconductors, which may have potential application for light emission. In light of recent experimental progress and the enhanced degree of control in the synthesis of GNRs and BNNR, our results highlight an interesting avenue for synthesizing a novel specific type of C0.5(BN)0.5 nanotube (gapless or narrow direct gap semiconductor), with potentially important applications in BNC-based nanodevices.
Resumo:
We demonstrated for the first time by large-scale ab initio calculations that a graphene/titania interface in the ground electronic state forms a charge-transfer complex due to the large difference of work functions between graphene and titania, leading to substantial hole doping in graphene. Interestingly, electrons in the upper valence band can be directly excited from graphene to the conduction band, that is, the 3d orbitals of titania, under visible light irradiation. This should yield well-separated electron−hole pairs, with potentially high photocatalytic or photovoltaic performance in hybrid graphene and titania nanocomposites. Experimental wavelength-dependent photocurrent generation of the graphene/titania photoanode demonstrated noticeable visible light response and evidently verified our ab initio prediction.
Resumo:
Aerial Vehicles (UAV) has become a significant growing segment of the global aviation industry. These vehicles are developed with the intention of operating in regions where the presence of onboard human pilots is either too risky or unnecessary. Their popularity with both the military and civilian sectors have seen the use of UAVs in a diverse range of applications, from reconnaissance and surveillance tasks for the military, to civilian uses such as aid relief and monitoring tasks. Efficient energy utilisation on an UAV is essential to its functioning, often to achieve the operational goals of range, endurance and other specific mission requirements. Due to the limitations of the space available and the mass budget on the UAV, it is often a delicate balance between the onboard energy available (i.e. fuel) and achieving the operational goals. This paper presents the development of a parallel Hybrid Electric Propulsion System (HEPS) on a small fixed-wing UAV incorporating an Ideal Operating Line (IOL) control strategy. A simulation model of an UAV was developed in the MATLAB Simulink environment, utilising the AeroSim Blockset and the in-built Aerosonde UAV block and its parameters. An IOL analysis of an Aerosonde engine was performed, and the most efficient (i.e. provides greatest torque output at the least fuel consumption) points of operation for this engine were determined. Simulation models of the components in a HEPS were designed and constructed in the MATLAB Simulink environment. It was demonstrated through simulation that an UAV with the current HEPS configuration was capable of achieving a fuel saving of 6.5%, compared to the ICE-only configuration. These components form the basis for the development of a complete simulation model of a Hybrid-Electric UAV (HEUAV).
Resumo:
Understanding network traffic behaviour is crucial for managing and securing computer networks. One important technique is to mine frequent patterns or association rules from analysed traffic data. On the one hand, association rule mining usually generates a huge number of patterns and rules, many of them meaningless or user-unwanted; on the other hand, association rule mining can miss some necessary knowledge if it does not consider the hierarchy relationships in the network traffic data. Aiming to address such issues, this paper proposes a hybrid association rule mining method for characterizing network traffic behaviour. Rather than frequent patterns, the proposed method generates non-similar closed frequent patterns from network traffic data, which can significantly reduce the number of patterns. This method also proposes to derive new attributes from the original data to discover novel knowledge according to hierarchy relationships in network traffic data and user interests. Experiments performed on real network traffic data show that the proposed method is promising and can be used in real applications. Copyright2013 John Wiley & Sons, Ltd.