107 resultados para Human Symbolic Thinking and Acting
Resumo:
This is the fourth TAProViz workshop being run at the 13th International Conference on Business Process Management (BPM). The intention this year is to consolidate on the results of the previous successful workshops by further developing this important topic, identifying the key research topics of interest to the BPM visualization community. Towards this goal, the workshop topics were extended to human computer interaction and related domains. Submitted papers were evaluated by at least three program committee members, in a double blind manner, on the basis of significance, originality, technical quality and exposition. Three full and one position papers were accepted for presentation at the workshop. In addition, we invited a keynote speaker, Jakob Pinggera, a postdoctoral researcher at the Business Process Management Research Cluster at the University of Innsbruck, Austria.
Resumo:
This paper addresses the following predictive business process monitoring problem: Given the execution trace of an ongoing case,and given a set of traces of historical (completed) cases, predict the most likely outcome of the ongoing case. In this context, a trace refers to a sequence of events with corresponding payloads, where a payload consists of a set of attribute-value pairs. Meanwhile, an outcome refers to a label associated to completed cases, like, for example, a label indicating that a given case completed “on time” (with respect to a given desired duration) or “late”, or a label indicating that a given case led to a customer complaint or not. The paper tackles this problem via a two-phased approach. In the first phase, prefixes of historical cases are encoded using complex symbolic sequences and clustered. In the second phase, a classifier is built for each of the clusters. To predict the outcome of an ongoing case at runtime given its (uncompleted) trace, we select the closest cluster(s) to the trace in question and apply the respective classifier(s), taking into account the Euclidean distance of the trace from the center of the clusters. We consider two families of clustering algorithms – hierarchical clustering and k-medoids – and use random forests for classification. The approach was evaluated on four real-life datasets.