176 resultados para Herbert Gold Mine
Resumo:
Water management is vital for mine sites both for production and sustainability related issues. Effective water management is a complex task since the role of water on mine sites is multifaceted. Computers models are tools that represent mine site water interaction and can be used by mine sites to inform or evaluate their water management strategies. There exist several types of models that can be used to represent mine site water interactions. This paper presents three such models: an operational model, an aggregated systems model and a generic systems model. For each model the paper provides a description and example followed by an analysis of its advantages and disadvantages. The paper hypotheses that since no model is optimal for all situations, each model should be applied in situations where it is most appropriate based upon the scale of water interactions being investigated, either unit (operation), inter-site (aggregated systems) or intra-site (generic systems).
Resumo:
When Dino De Laurentiis died in October 2010, most media outlets, including Australian based publications and services reported the news and most newspapers carried obituaries. Obituarists described Dino’s many failures in great detail; as film historian David Thomson wrote in The Guardian ‘there were enough bombs from Dino to level a large city’ (Thomson 2010). But Dino was also responsible in no small way for the building of new media cities in Rome, in North Carolina, and in Queensland. In this article, we draw on some of our research for that book to outline in more detail the importance of Dino De Laurentiis’s involvement to the Gold Coast studios and to film and television production in Queensland.
Resumo:
The effect of plasmonoscillations, induced by pulsed laserirradiation, on the DC tunnel current between islands in a discontinuous thin goldfilm is studied. The tunnel current is found to be strongly enhanced by partial rectification of the plasmon-induced AC tunnel currents flowing between adjacent gold islands. The DC tunnel current enhancement is found to increase approximately linearly with the laser intensity and the applied DC bias voltage. The experimental data can be well described by an electron tunnelling model which takes the plasmon-induced AC voltage into account. Thermal heating seems not to contribute to the tunnel current enhancement.
Resumo:
Using a multiple plasma deposition-annealing (MDA) technique, we have fabricated an Au nanoisland-based thin film nanoresistor with a very low temperature coefficient of electrical resistivity in a cryogenic-to-room temperature range of 10 to 300 K. The nanoislanded gold film was deposited on a SiO2/Si wafer (500 nm SiO2 thickness) between two 300 nm thick Au electrodes which were separated by 100 m. A sophisticated selection of the thickness of the nanoislanded gold film, the annealing temperature, as well as the number of deposition/annealing cycles resulted in the fabrication of a nanoresistor with a temperature coefficient of electrical resistivity of 2.1 × 10-3 K-1 and the resistivity deviation not exceeding 2% in a cryogenic-to-room temperature range. We have found that the constant resistivity regime of the nanoisland-based thin film nanoresistor corresponds to a minimized nanoisland activation energy (approximately 0.3 meV). This energy can be minimized by reducing the nearest neighbor distance and increasing the size of the Au nanoislands in the optimized nanoresistor structure. It is shown that the constant resistivity nanoresistor operates in the regime where the thermally activated electron tunneling is compensated by the negative temperature dependence of the metallic-type conductivity of nanoislands. Our results are relevant to the development of commercially viable methods of nanoresistor production for various nanoelectronics-based devices. The proposed MDA technique also provides the opportunity to fabricate large arrays of metallic nanoparticles with controllable size, shapes and inter-nanoparticle gaps.
Resumo:
Controlling the electrical resistance of granular thin films is of great importance for many applications, yet a full understanding of electron transport in such films remains a major challenge. We have studied experimentally and by model calculations the temperature dependence of the electrical resistance of ultrathin gold films at temperatures between 2 K and 300 K. Using sputter deposition, the film morphology was varied from a discontinuous film of weakly coupled meandering islands to a continuous film of strongly coupled coalesced islands. In the weak-coupling regime, we compare the regular island array model, the cotunneling model, and the conduction percolation model with our experimental data. We show that the tunnel barriers and the Coulomb blockade energies are important at low temperatures and that the thermal expansion of the substrate and the island resistance affect the resistance at high temperatures. At low temperatures our experimental data show evidence for a transition from electron cotunneling to sequential tunneling but the data can also be interpreted in terms of conduction percolation. The resistivity and temperature coefficient of resistance of the meandering gold islands are found to resemble those of gold nanowires. We derive a simple expression for the temperature at which the resistance changes from non-metal-like behavior into metal-like behavior. In the case of strong island coupling, the total resistance is solely determined by the Ohmic island resistance.
Resumo:
The possibility to control the electric resistivity-temperature dependence of the nanosized resistive components made using hierarchical multilevel arrays of self-assembled gold nanoparticles prepared by multiple deposition/annealing is demonstrated. It is experimentally shown that the hierarchical three-level patterns, where the nanoparticles of sizes ranging from several nanometers to several tens of nanometer play a competitive roles in the electric conductivity, demonstrate sharp changes in the activation energy. These patterns can be used for the precise tuning of the resistivity-temperature behavior of nanoelectronic components.
Resumo:
In the coming decades, the mining industry faces the dual challenge of lowering both its water and energy use. This presents a difficulty since technological advances that decrease the use of one can increase the use of the other. Historically, energy and water use have been modelled independently, making it difficult to evaluate the true costs and benefits from water and energy improvements. This paper presents a hierarchical systems model that is able to represent interconnected water and energy use at a whole of site scale. In order to explore the links between water and energy four technologies advancements have been modelled: use of dust suppression additives, the adoption of thickened tailings, the transition to dry processing and the incorporation of a treatment plant. The results show a synergy between decreased water and energy use for dust suppression additives, but a trade-off for the others.
Resumo:
Rapid, simple, catalyst-free, room-temperature sonochemical fabrication of long (up to 30 mm), ultra-thin (about 20 nm), crystalline gold nanowires on nanoporous anodic alumina membranes is reported. It is demonstrated that the nanowires nucleate and grow inside the nanosized pores and then form a dense network on the bottom side of the membrane. A growth mechanism is proposed based on the formation of through channels in the Al2O3 membrane by sonochemical etching, followed by nanowire nucleation in the channels and their further extrusion out of the pores by acoustic cavitation. This process can be used for the fabrication of metal nanowires with highly controllable diameter and density, suitable for numerous applications such as nanoelectronic, nanofluidic, and optoelectronic components and devices.
Resumo:
The effect of plasmon oscillations on the DC tunnel current in a gold nanoisland thin film (GNITF) is investigated using low intensity P~1W/cm2 continuous wave lasers. While DC voltages (1–150 V) were applied to the GNITF, it was irradiated with lasers at different wavelengths (k¼473, 532, and 633 nm). Because of plasmon oscillations, the tunnel current increased. It is found that the tunnel current enhancement is mainly due to the thermal effect of plasmon oscillations rather than other plasmonic effects. The results are highly relevant to applications of plasmonic effects in opto-electronic devices.
Resumo:
Over the past decade, the mining industry has come to recognise the importance of water both to itself and to others. Water accounting is a formalisation of this importance that quantifies and communicates how water is used by individual sites and the industry as a whole. While there are a number of different accounting frameworks that could be used within the industry, the Minerals Council of Australia’s (MCA) Water Accounting Framework (WAF) is an industry-led approach that provides a consistent representation of mine site water interactions regardless of their operational, social or environmental context that allows for valid comparisons between sites and companies. The WAF contains definitions of offsite water sources and destinations and onsite water use, a methodology for applying the definitions and a set of metrics to measure site performance. The WAF is comprised of two models: the Input-Output Model, which represents the interactions between sites and their surrounding community and the Operational Model, which represents onsite water interactions. Members of the MCA have recently adopted the WAF’s Input-Output Model to report on their external water interactions in their Australian operations with some adopting it on a global basis. To support this adoption, there is a need for companies to better understand how to implement the WAF in their own operations. Developing a water account is non-trivial, particularly for sites unfamiliar with the WAF or for sites with the need to represent unusual features. This work describes how to build a water account for a given site using the Input-Output Model with an emphasis on how to represent challenging situations.
Resumo:
A mine site water balance is important for communicating information to interested stakeholders, for reporting on water performance, and for anticipating and mitigating water-related risks through water use/demand forecasting. Gaining accuracy over the water balance is therefore crucial for sites to achieve best practice water management and to maintain their social license to operate. For sites that are located in high rainfall environments the water received to storage dams through runoff can represent a large proportion of the overall inputs to site; inaccuracies in these flows can therefore lead to inaccuracies in the overall site water balance. Hydrological models that estimate runoff flows are often incorporated into simulation models used for water use/demand forecasting. The Australian Water Balance Model (AWBM) is one example that has been widely applied in the Australian context. However, the calibration of AWBM in a mining context can be challenging. Through a detailed case study, we outline an approach that was used to calibrate and validate AWBM at a mine site. Commencing with a dataset of monitored dam levels, a mass balance approach was used to generate an observed runoff sequence. By incorporating a portion of this observed dataset into the calibration routine, we achieved a closer fit between the observed vs. simulated dataset compared with the base case. We conclude by highlighting opportunities for future research to improve the calibration fit through improving the quality of the input dataset. This will ultimately lead to better models for runoff prediction and thereby improve the accuracy of mine site water balances.
Resumo:
The mining industry faces concurrent pressures of reducing water use, energy consumption and greenhouse gas (GHG) emissions in coming years. However, the interactions between water and energy use, as well as GHG e missions have largely been neglected in modelling studies to date. In addition, investigations tend to focus on the unit operation scale, with little consideration of whole-of-site or regional scale effects. This paper presents an application of a hierarchical systems model (HSM) developed to represent water, energy and GHG emissions fluxes at scales ranging from the unit operation, to the site level, to the regional level. The model allows for the linkages between water use, energy use and GHG emissions to be examined in a fl exible and intuitive way, so that mine sites can predict energy and emissions impacts of water use reduction schemes and vice versa. This paper examines whether this approach can also be applied to the regional scale with multiple mine sites. The model is used to conduct a case study of several coal mines in the Bowen Basin, Australia, to compare the utility of centralised and decentralised mine water treatment schemes. The case study takes into account geographical factors (such as water pumping distances and elevations), economic factors (such as capital and operating cost curves for desalination treatment plants) and regional factors (such as regionally varying climates and associated variance in mine water volumes and quality). The case study results indicate that treatment of saline mine water incurs a trade-off between water and energy use in all cases. However, significant cost differences between centralised and decentralised schemes can be observed in a simple economic analysis. Further research will examine the possibility for deriving model up-scaling algorithms to reduce computational requirements.
Resumo:
The surface enhanced Raman scattering effect has shown immense potential for detecting trace amounts of explosive vapor molecules. To date, efforts to produce a commercially available, reliable SERS sensor have been impeded by an inability to separate the electromagnetic enhancement produced by the metallic nanostructure from other signal enhancing effects. Here, we show a new Raman sensor that uses surface acoustic waves (SAWs) to produce controllable surface structures on gold films deposited on LiNbO3 substrates that modulate the Raman signal of a target compound (thiophenol) adsorbed on the films. We demonstrate that this sensor can dynamically control the Raman signal simply by changing the SAW’s amplitude, allowing the Raman signal enhancement factor to be directly measured with no variation in the concentration of the target compound. The physically adsorbed molecules can be removed from the sensor without physical cleaning or damage, making it possible to reuse it for real-time Raman detection.
Resumo:
Vertical graphene nanosheets have advantages over their horizontal counterparts, primarily due to the larger surface area available in the vertical systems. Vertical sheets can accommodate more functional particles, and due to the conduction and optical properties of thin graphene, these structures can find niche applications in the development of sensing and energy storage devices. This work is a combined experimental and theoretical study that reports on the synthesis and optical responses of vertical sheets decorated with gold nanoparticles. The findings help in interpreting optical responses of these hybrid graphene structures and are relevant to the development of future sensing platforms.
Resumo:
This paper employs a VAR-GARCH model to investigate the return links and volatility transmission between the S&P 500 and commodity price indices for energy, food, gold and beverages over the turbulent period from 2000 to 2011. Understanding the price behavior of commodity prices and the volatility transmission mechanism between these markets and the stock exchanges are crucial for each participant, including governments, traders, portfolio managers, consumers, and producers. For return and volatility spillover, the results show significant transmission among the S&P 500 and commodity markets. The past shocks and volatility of the S&P 500 strongly influenced the oil and gold markets. This study finds that the highest conditional correlations are between the S&P 500 and gold index and the S&P 500 and WTI index. We also analyze the optimal weights and hedge ratios for commodities/S&P 500 portfolio holdings using the estimates for each index. Overall, our findings illustrate several important implications for portfolio hedgers for making optimal portfolio allocations, engaging in risk management and forecasting future volatility in equity and commodity markets. © 2013 Elsevier B.V.