290 resultados para Hepatic drug metabolism
Resumo:
In the context of cultural and/or differential ‘normalisation’ of certain forms of drug use, this article describes two case-studies of heavy recreational drug users. The daily lives of these users blur the line between the legal and the illegal; their drug trading is generally as a consumer and ‘friend of a friend’ small dealer in the low-level market. In the first case, problems with management of employment, time and financial budgeting are described; in the second case, such management is accomplished. Discussion refers to: differences between the two in relation to resources and vulnerability to risks, and to leisure/pleasure cultures of hedonism. The research agenda should pay more attention to users who seek to maintain a legitimate lifestyle but who develop problems managing work and their drug-related leisure. Understanding the consumer demand and dealing activity of such users is important in trying to develop a fuller understanding of drug markets.
Resumo:
Dry Powder Inhaler (DPI) technology has a significant impact in the treatment of various respiratory disorders. DPI formulations consist of a micronized drug (<5ìm) blended with an inert coarse carrier, for which lactose is widely used to date. DPIs are one of the inhalation devices which are used to target the delivery of drugs to the lungs. Drug delivery via DPI formulations is influenced by the physico-chemical characteristics of lactose particles such as size, shape, surface roughness and adhesional forces. Commercially available DPI formulations, which utilise lactose as the carrier, are not efficient in delivering drug to the lungs. The reasons for this are the surface morphology, adhesional properties and surface roughness of lactose. Despite several attempts to modify lactose, the maximum efficient drug delivery to the lungs remains limited; hence, exploring suitable alternative carriers for DPIs is of paramount importance. Therefore, the objective of the project was to study the performance of spherical polymer microparticles as drug carriers and the factors controlling their performance. This study aimed to use biodegradable polymer microspheres as alternative carriers to lactose in DPIs for achieving efficient drug delivery into the lungs. This project focused on fabricating biodegradable polymer microparticles with reproducible surface morphology and particle shape. The surface characteristics of polymeric carriers and the adhesional forces between the drug and carrier particles were investigated in order to gain a better understanding of their influence on drug dispersion. For this purpose, two biodegradable polymers- polycaprolactone (PCL) and poly (DL-lactide-co-glycolide) (PLGA) were used as the carriers to deliver the anti-asthmatic drug - Salbutamol Sulphate (SS). The first study conducted for this dissertation was the aerosolization of SS from mixtures of SS and PCL or PLGA microparticles. The microparticles were fabricated using an emulsion technique and were characterized by laser diffraction for particle size analysis, Scanning Electron Microscopy (SEM) for surface morphology and X-ray Photoelectron Spectroscopy (XPS) to obtain surface elemental composition. The dispersion of the drug from the DPI formulations was determined by using a Twin Stage Impinger (TSI). The Fine particle Fraction (FPF) of SS from powder mixtures was analyzed by High Performance Liquid Chromatography (HPLC). It was found that the drug did not detach from the surface of PCL microspheres. To overcome this, the microspheres were coated with anti-adherent agents such as magnesium stearate and leucine to improve the dispersion of the drug from the carrier surfaces. It was found that coating the PCL microspheres helped in significantly improving the FPF of SS from the PCL surface. These results were in contrast to the PLGA microspheres which readily allowed detachment of the SS from their surface. However, coating PLGA microspheres with antiadherent agents did not further improve the detachment of the drug from the surface. Thus, the first part of the study demonstrated that the surface-coated PCL microspheres and PLGA microspheres can be potential alternatives to lactose as carriers in DPI formulations; however, there was no significant improvement in the FPF of the drug. The second part of the research studied the influence of the size of the microspheres on the FPF of the drug. For this purpose, four different sizes (25 ìm, 48 ìm, 100 ìm and 150 ìm) of the PCL and PLGA microspheres were fabricated and characterized. The dispersion of the drug from microspheres of different sizes was determined. It was found that as the size of the carrier increased there was a significant increase in the FPF of SS. This study suggested that the size of the carrier plays an important role in the dispersion of the drug from the carrier surface. Subsequent experiments in the third part of the dissertation studied the surface properties of the polymeric carrier. The adhesion forces existing between the drug particle and the polymer surfaces, and the surface roughness of the carriers were quantified using Atomic Force Microscopy (AFM). A direct correlation between adhesion forces and dispersion of the drug from the carrier surface was observed suggesting that adhesion forces play an important role in determining the detachment potential of the drug from the carrier surface. However, no direct relationship between the surface roughness of the PCL or PLGA carrier and the FPF of the drug was observed. In conclusion, the body of work presented in this dissertation demonstrated the potential of coated PCL microspheres and PLGA microspheres to be used in DPI formulations as an alternative carrier to sugar based carriers. The study also emphasized the role of the size of the carrier particles and the forces of interaction prevailing between the drug and the carrier particle surface on the aerosolization performances of the drug.
Resumo:
Nicotine addiction remains the leading cause of death and disease in developed and developing nations and a major cause of mortality around the world. Currently, nicotine replacement therapies (NRTs), bupropion, and varenicline are approved by the regulatory agencies as first-line treatments for nicotine addiction. Emerging evidence indicates that varenicline and bupropion have some therapeutic limitations for treating nicotine addiction with oral route of administration. Thus, continued investigation of innovative drug delivery for nicotine addiction remains a critical priority. This review will discuss some novel strategies and future directions for pulmonary drug delivery, an emerging route of administration for smoking cessation. It is anticipated that the advancement of knowledge on pulmonary drug delivery will provide better management for nicotine addiction and other addictive disorders.
Resumo:
Pulmonary drug delivery is the focus of much research and development because of its great potential to produce maximum therapeutic benefit. Among the available options the dry powder inhaler (DPI) is the preferred device for the treatment of an increasingly diverse number of diseases. However, as drug delivery from a DPI involves a complicated set of physical processes and the integration of drug formulations, device design and patient usage, the engineering development of this medical technology is proving to be a great challenge. Currently there is large range of devices that are either available on the market or under development, however, none exhibit superior clinical efficacy. A major concern is the inter- and intra-patient variability of the drug dosage delivered to the deep lungs. The extent of variability depends on the drug formulation, the device design and the patient’s inhalation profile. This article reviews recent advances in DPI technology and presents the key factors which motivate and constrain the successful engineering of a universal, patient-independent DPI that is capable of efficient, reliable and repeatable drug delivery. A strong emphasis is placed on the physical processes of drug powder aerosolisation, deagglomeration, and dispersion and on the engineering of formulations and inhalers that can optimise these processes.
Resumo:
Background: Tenofovir has been associated with renal phosphate wasting, reduced bone mineral density, and higher parathyroid hormone levels. The aim of this study was to carry out a detailed comparison of the effects of tenofovir versus non-tenofovir use on calcium, phosphate and, vitamin D, parathyroid hormone (PTH), and bone mineral density. Methods: A cohort study of 56 HIV-1 infected adults at a single centre in the UK on stable antiretroviral regimes comparing biochemical and bone mineral density parameters between patients receiving either tenofovir or another nucleoside reverse transcriptase inhibitor. Principal Findings: In the unadjusted analysis, there was no significant difference between the two groups in PTH levels (tenofovir mean 5.9 pmol/L, 95% confidence intervals 5.0 to 6.8, versus non-tenofovir; 5.9, 4.9 to 6.9; p = 0.98). Patients on tenofovir had significantly reduced urinary calcium excretion (median 3.01 mmol/24 hours) compared to non-tenofovir users (4.56; p,0.0001). Stratification of the analysis by age and ethnicity revealed that non-white men but not women, on tenofovir had higher PTH levels than non-white men not on tenofovir (mean difference 3.1 pmol/L, 95% CI 5.3 to 0.9; p = 0.007). Those patients with optimal 25-hydroxyvitamin D (.75 nmol/L) on tenofovir had higher 1,25-dihydroxyvitamin D [1,25(OH)2D] (median 48 pg/mL versus 31; p = 0.012), fractional excretion of phosphate (median 26.1%, versus 14.6;p = 0.025) and lower serum phosphate (median 0.79 mmol/L versus 1.02; p = 0.040) than those not taking tenofovir. Conclusions: The effects of tenofovir on PTH levels were modified by sex and ethnicity in this cohort. Vitamin D status also modified the effects of tenofovir on serum concentrations of 1,25(OH)2D and phosphate.
Resumo:
Purpose To study the protective effects and underlying molecular mechanisms of SAMC on carbon tetrachloride (CCl4)-induced acute hepatotoxicity in the mouse model. Methods Mice were intraperitoneally injected with CCl4 (50 μl/kg; single dose) to induce acute hepatotoxicity with or without a 2-h pre-treatment of SAMC intraperitoneal injection (200 mg/kg; single dose). After 8 h, the blood serum and liver samples of mice were collected and subjected to measurements of histological and molecular parameters of hepatotoxicity. Results SAMC reduced CCl4-triggered cellular necrosis and inflammation in the liver under histological analysis. Since co-treatment of SAMC and CCl4 enhanced the expressions of antioxidant enzymes, reduced the nitric oxide (NO)-dependent oxidative stress, and inhibited lipid peroxidation induced by CCl4. SAMC played an essential antioxidative role during CCl4-induced hepatotoxicity. Administration of SAMC also ameliorated hepatic inflammation induced by CCl4 via inhibiting the activity of NF-κB subunits p50 and p65, thus reducing the expressions of pro-inflammatory cytokines, mediators, and chemokines, as well as promoting pro-regenerative factors at both transcriptional and translational levels. Conclusions Our results indicate that SAMC mitigates cellular damage, oxidative stress, and inflammation in CCl4-induced acute hepatotoxicity mouse model through regulation of NF-κB. Garlic or garlic derivatives may therefore be a potential food supplement in the prevention of liver damage.
Resumo:
This eChapter has an introduction to pharmacology and drug nomenclature followed by a detailed discussion of routes of administration starting with oral administration (with absorption from the gastrointestinal tract, and first pass liver metabolism. This is followed by a discussion of rectal, sublingual and injection routes of administration(intravenous, intra-arterial, subcutaneous, intramuscular, intrathecal and epidural). Then the topical, pulmonary and intraosseus routes of administration are considered.
Resumo:
It is often argued that consumption of alcohol, tobacco and drugs is detrimental to the cognitive abilities of teenagers. In order to disentangle a possible causal effect of these substances use from a self-selection bias, we control for pupils previous performance and for their previous rate of progression applying a DiDiD strategy. Using the NELS 1988 panel dataset, we find that the effects of alcohol and tobacco on test scores disappear once the selection bias is controlled for (this does not preclude long term detrimental effects). However, we find reliable evidence that heavy use of drugs (marijuana and cocaine) has direct detrimental effects on educational achievements. Hence, our results may have significant policy implications.
Resumo:
Regenerative medicine-based approaches for the repair of damaged cartilage rely on the ability to propagate cells while promoting their chondrogenic potential. Thus, conditions for cell expansion should be optimized through careful environmental control. Appropriate oxygen tension and cell expansion substrates and controllable bioreactor systems are probably critical for expansion and subsequent tissue formation during chondrogenic differentiation. We therefore evaluated the effects of oxygen and microcarrier culture on the expansion and subsequent differentiation of human osteoarthritic chondrocytes. Freshly isolated chondrocytes were expanded on tissue culture plastic or CultiSpher-G microcarriers under hypoxic or normoxic conditions (5% or 20% oxygen partial pressure, respectively) followed by cell phenotype analysis with flow cytometry. Cells were redifferentiated in micromass pellet cultures over 4 weeks, under either hypoxia or normoxia. Chondrocytes cultured on tissue culture plastic proliferated faster, expressed higher levels of cell surface markers CD44 and CD105 and demonstrated stronger staining for proteoglycans and collagen type II in pellet cultures compared with microcarrier-cultivated cells. Pellet wet weight, glycosaminoglycan content and expression of chondrogenic genes were significantly increased in cells differentiated under hypoxia. Hypoxia-inducible factor-3alpha mRNA was up-regulated in these cultures in response to low oxygen tension. These data confirm the beneficial influence of reduced oxygen on ex vivo chondrogenesis. However, hypoxia during cell expansion and microcarrier bioreactor culture does not enhance intrinsic chondrogenic potential. Further improvements in cell culture conditions are therefore required before chondrocytes from osteoarthritic and aged patients can become a useful cell source for cartilage regeneration.