141 resultados para HABITAT FEATURES
Resumo:
The strain data acquired from structural health monitoring (SHM) systems play an important role in the state monitoring and damage identification of bridges. Due to the environmental complexity of civil structures, a better understanding of the actual strain data will help filling the gap between theoretical/laboratorial results and practical application. In the study, the multi-scale features of strain response are first revealed after abundant investigations on the actual data from two typical long-span bridges. Results show that, strain types at the three typical temporal scales of 10^5, 10^2 and 10^0 sec are caused by temperature change, trains and heavy trucks, and have their respective cut-off frequency in the order of 10^-2, 10^-1 and 10^0 Hz. Multi-resolution analysis and wavelet shrinkage are applied for separating and extracting these strain types. During the above process, two methods for determining thresholds are introduced. The excellent ability of wavelet transform on simultaneously time-frequency analysis leads to an effective information extraction. After extraction, the strain data will be compressed at an attractive ratio. This research may contribute to a further understanding of actual strain data of long-span bridges; also, the proposed extracting methodology is applicable on actual SHM systems.
Resumo:
Introduction: Built environment interventions designed to reduce non-communicable diseases and health inequity, complement urban planning agendas focused on creating more ‘liveable’, compact, pedestrian-friendly, less automobile dependent and more socially inclusive cities.However, what constitutes a ‘liveable’ community is not well defined. Moreover, there appears to be a gap between the concept and delivery of ‘liveable’ communities. The recently funded NHMRC Centre of Research Excellence (CRE) in Healthy Liveable Communities established in early 2014, has defined ‘liveability’ from a social determinants of health perspective. Using purpose-designed multilevel longitudinal data sets, it addresses five themes that address key evidence-base gaps for building healthy and liveable communities. The CRE in Healthy Liveable Communities seeks to generate and exchange new knowledge about: 1) measurement of policy-relevant built environment features associated with leading non-communicable disease risk factors (physical activity, obesity) and health outcomes (cardiovascular disease, diabetes) and mental health; 2) causal relationships and thresholds for built environment interventions using data from longitudinal studies and natural experiments; 3) thresholds for built environment interventions; 4) economic benefits of built environment interventions designed to influence health and wellbeing outcomes; and 5) factors, tools, and interventions that facilitate the translation of research into policy and practice. This evidence is critical to inform future policy and practice in health, land use, and transport planning. Moreover, to ensure policy-relevance and facilitate research translation, the CRE in Healthy Liveable Communities builds upon ongoing, and has established new, multi-sector collaborations with national and state policy-makers and practitioners. The symposium will commence with a brief introduction to embed the research within an Australian health and urban planning context, as well as providing an overall outline of the CRE in Healthy Liveable Communities, its structure and team. Next, an overview of the five research themes will be presented. Following these presentations, the Discussant will consider the implications of the research and opportunities for translation and knowledge exchange. Theme 2 will establish whether and to what extent the neighbourhood environment (built and social) is causally related to physical and mental health and associated behaviours and risk factors. In particular, research conducted as part of this theme will use data from large-scale, longitudinal-multilevel studies (HABITAT, RESIDE, AusDiab) to examine relationships that meet causality criteria via statistical methods such as longitudinal mixed-effect and fixed-effect models, multilevel and structural equation models; analyse data on residential preferences to investigate confounding due to neighbourhood self-selection and to use measurement and analysis tools such as propensity score matching and ‘within-person’ change modelling to address confounding; analyse data about individual-level factors that might confound, mediate or modify relationships between the neighbourhood environment and health and well-being (e.g., psychosocial factors, knowledge, perceptions, attitudes, functional status), and; analyse data on both objective neighbourhood characteristics and residents’ perceptions of these objective features to more accurately assess the relative contribution of objective and perceptual factors to outcomes such as health and well-being, physical activity, active transport, obesity, and sedentary behaviour. At the completion of the Theme 2, we will have demonstrated and applied statistical methods appropriate for determining causality and generated evidence about causal relationships between the neighbourhood environment, health, and related outcomes. This will provide planners and policy makers with a more robust (valid and reliable) basis on which to design healthy communities.
Resumo:
Abnormal event detection has attracted a lot of attention in the computer vision research community during recent years due to the increased focus on automated surveillance systems to improve security in public places. Due to the scarcity of training data and the definition of an abnormality being dependent on context, abnormal event detection is generally formulated as a data-driven approach where activities are modeled in an unsupervised fashion during the training phase. In this work, we use a Gaussian mixture model (GMM) to cluster the activities during the training phase, and propose a Gaussian mixture model based Markov random field (GMM-MRF) to estimate the likelihood scores of new videos in the testing phase. Further-more, we propose two new features: optical acceleration, and the histogram of optical flow gradients; to detect the presence of any abnormal objects and speed violations in the scene. We show that our proposed method outperforms other state of the art abnormal event detection algorithms on publicly available UCSD dataset.
Resumo:
Fine-grained leaf classification has concentrated on the use of traditional shape and statistical features to classify ideal images. In this paper we evaluate the effectiveness of traditional hand-crafted features and propose the use of deep convolutional neural network (ConvNet) features. We introduce a range of condition variations to explore the robustness of these features, including: translation, scaling, rotation, shading and occlusion. Evaluations on the Flavia dataset demonstrate that in ideal imaging conditions, combining traditional and ConvNet features yields state-of-theart performance with an average accuracy of 97:3%�0:6% compared to traditional features which obtain an average accuracy of 91:2%�1:6%. Further experiments show that this combined classification approach consistently outperforms the best set of traditional features by an average of 5:7% for all of the evaluated condition variations.
Resumo:
1.Marine ecosystems provide critically important goods and services to society, and hence their accelerated degradation underpins an urgent need to take rapid, ambitious and informed decisions regarding their conservation and management. 2.The capacity, however, to generate the detailed field data required to inform conservation planning at appropriate scales is limited by time and resource consuming methods for collecting and analysing field data at the large scales required. 3.The ‘Catlin Seaview Survey’, described here, introduces a novel framework for large-scale monitoring of coral reefs using high-definition underwater imagery collected using customized underwater vehicles in combination with computer vision and machine learning. This enables quantitative and geo-referenced outputs of coral reef features such as habitat types, benthic composition, and structural complexity (rugosity) to be generated across multiple kilometre-scale transects with a spatial resolution ranging from 2 to 6 m2. 4.The novel application of technology described here has enormous potential to contribute to our understanding of coral reefs and associated impacts by underpinning management decisions with kilometre-scale measurements of reef health. 5.Imagery datasets from an initial survey of 500 km of seascape are freely available through an online tool called the Catlin Global Reef Record. Outputs from the image analysis using the technologies described here will be updated on the online repository as work progresses on each dataset. 6.Case studies illustrate the utility of outputs as well as their potential to link to information from remote sensing. The potential implications of the innovative technologies on marine resource management and conservation are also discussed, along with the accuracy and efficiency of the methodologies deployed.
Resumo:
Two ultrasound survey methods were used to determine the presence and activity patterns of New Zealand long-tailed bats (Chalinolobus tuberculatus) in the city of Hamilton. First, 13 monthly surveys conducted at 18 green spaces found C. tuberculatus in only one urban forest reserve, Hammond Bush, where they were found consistently throughout the year. Bat activity was strongly related to temperature. Second, twice-yearly citywide surveys conducted over 2 years determined the distribution and habitat associations of C. tuberculatus. Bats were found only in the southern part of the city and were strongly associated with the Waikato River. Bat activity was negatively correlated with housing and street light density and positively correlated with topographical complexity. In Hamilton, topographical complexity indicates the presence of gullies. Gullies probably provide foraging and roosting opportunities and connect the river to distant forest patches. These results suggest that urban habitats can be useful for bats if gullies can link these to distant habitat fragments.
Resumo:
Individuals' home ranges are constrained by resource distribution and density, population size, and energetic requirements. Consequently, home ranges and habitat selection may vary between individuals of different sex and reproductive conditions. Whilst home ranges of bats are well-studied in native habitats, they are often not well understood in modified landscapes, particularly exotic plantation forests. Although Chalinolobus tuberculatus (Vespertilionidae, Chiroptera) are present in plantation forests throughout New Zealand their home ranges have only been studied in native forest and forest-agricultural mosaic and no studies of habitat selection that included males had occurred in any habitat type. Therefore, we investigated C. tuberculatus home range and habitat selection within exotic plantation forest. Home range sizes did not differ between bats of different reproductive states. Bats selected home ranges with higher proportions of relatively old forest than was available. Males selected edges with open unplanted areas within their home ranges, which females avoided. We suggest males use these edges, highly profitable foraging areas with early evening peaks in invertebrate abundance, to maintain relatively low energetic demands. Females require longer periods of invertebrate activity to fulfil their needs so select older stands for foraging, where invertebrate activity is higher. These results highlight additional understanding gained when data are not pooled across sexes. Mitigation for harvest operations could include ensuring that areas suitable for foraging and roosting are located within a radius equal to the home range of this bat species.
Resumo:
The use of bat detectors to monitor bat activity is common. Although several papers have compared the performance of different brands, none have dealt with the effect of different habitats nor have they compared narrow- and broad-band detectors. In this study the performance of four brands of ultrasonic bat detector, including three narrowband and one broad-band model, were compared for their ability to detect a 40 kHz continuous sound of variable amplitude along 100 metre transects. Transects were laid out in two contrasting bat habitat types: grassland and forest. Results showed that the different brands of detector differed in their ability to detect the source in terms of maximum and minimum detectable distance of the source. The rate of sound degradation with distance as measured by each brand was also different. Significant differences were also found in the performance of different brands in open grassland versus deep forest. No significant differences were found within any brand of detector. Though not as sensitive as narrow-band detectors, broad-band models hold an advantage in their ability to identify species where several species are found sympatrically.
Resumo:
Early years researchers interested in storytelling have largely focused on the development of children’s language and social skills within constructed story sessions. Less focus has been given to the interactional aspects of storytelling in children’s everyday conversation and how the members themselves, the storytellers and story recipients, manage storytelling. An interactional view, using ethnomethodological and conversation analytic approaches, offers the opportunity to study children’s narratives in terms of ‘members work’. Detailed examination of a video-recorded interaction among a group of children in a preparatory year playground shows how the children managed interactions within conversational storytelling. Analyses highlight the ways in which children worked at gaining a turn and made a story tellable within a round of second stories. Investigating children’s competence-in-action ‘from within’, the findings from this research show how children invoke and accomplish competence through their interactions.
Resumo:
The detection of line-like features in images finds many applications in microanalysis. Actin fibers, microtubules, neurites, pilis, DNA, and other biological structures all come up as tenuous curved lines in microscopy images. A reliable tracing method that preserves the integrity and details of these structures is particularly important for quantitative analyses. We have developed a new image transform called the "Coalescing Shortest Path Image Transform" with very encouraging properties. Our scheme efficiently combines information from an extensive collection of shortest paths in the image to delineate even very weak linear features. © Copyright Microscopy Society of America 2011.
Resumo:
Selection of features that will permit accurate pattern classification is a difficult task. However, if a particular data set is represented by discrete valued features, it becomes possible to determine empirically the contribution that each feature makes to the discrimination between classes. This paper extends the discrimination bound method so that both the maximum and average discrimination expected on unseen test data can be estimated. These estimation techniques are the basis of a backwards elimination algorithm that can be use to rank features in order of their discriminative power. Two problems are used to demonstrate this feature selection process: classification of the Mushroom Database, and a real-world, pregnancy related medical risk prediction task - assessment of risk of perinatal death.
Resumo:
This paper addresses two common problems that users of various products and interfaces encounter— over-featured interfaces and product documentation. Over-featured interfaces are seen as a problem as they can confuse and over-complicate everyday interactions. Researchers also often claim that users do not read product documentation, although they are often exhorted to ‘RTFM’(read the field manual).We conducted two sets of studies with users which looked at the issues of both manuals and excess features with common domestic and personal products. The quantitative set was a series of questionnaires administered to 170 people over 7 years. The qualitative set consisted of two 6-month longitudinal studies based on diaries and interviews with a total of 15 participants. We found that manuals are not read by the majority of people, and most do not use all the features of the products that they own and use regularly. Men are more likely to do both than women, and younger people are less likely to use manuals than middle-aged and older ones. More educated people are also less likely to read manuals. Over-featuring and being forced to consult manuals also appears to cause negative emotional experiences. Implications of these findings are discussed.
Resumo:
This paper overviews the development of a vision-based AUV along with a set of complementary operational strategies to allow reliable autonomous data collection in relatively shallow water and coral reef environments. The development of the AUV, called Starbug, encountered many challenges in terms of vehicle design, navigation and control. Some of these challenges are discussed with focus on operational strategies for estimating and reducing the total navigation error when using lower-resolution sensing modalities. Results are presented from recent field trials which illustrate the ability of the vehicle and associated operational strategies to enable rapid collection of visual data sets suitable for marine research applications.
Resumo:
Ovarian cancer is the most common cause of gynaecological cancer death, with an overall 5-year relative survival of 43%. Impaired physical wellbeing and overall quality of life (QoL) represent major concerns for women during and following ovarian cancer treatment, predict survival and are amenable to change through interventions. Exercise, now considered an important part of overall management of a number of cancers, improves short-term outcomes (e.g., function, fatigue, QoL) during chemotherapy...