111 resultados para Graph matching
Resumo:
In the mining optimisation literature, most researchers focused on two strategic-level and tactical-level open-pit mine optimisation problems, which are respectively termed ultimate pit limit (UPIT) or constrained pit limit (CPIT). However, many researchers indicate that the substantial numbers of variables and constraints in real-world instances (e.g., with 50-1000 thousand blocks) make the CPIT’s mixed integer programming (MIP) model intractable for use. Thus, it becomes a considerable challenge to solve the large scale CPIT instances without relying on exact MIP optimiser as well as the complicated MIP relaxation/decomposition methods. To take this challenge, two new graph-based algorithms based on network flow graph and conjunctive graph theory are developed by taking advantage of problem properties. The performance of our proposed algorithms is validated by testing recent large scale benchmark UPIT and CPIT instances’ datasets of MineLib in 2013. In comparison to best known results from MineLib, it is shown that the proposed algorithms outperform other CPIT solution approaches existing in the literature. The proposed graph-based algorithms leads to a more competent mine scheduling optimisation expert system because the third-party MIP optimiser is no longer indispensable and random neighbourhood search is not necessary.
Resumo:
Objective: To illustrate a new method for simplifying patient recruitment for advanced prostate cancer clinical trials using natural language processing techniques. Background: The identification of eligible participants for clinical trials is a critical factor to increase patient recruitment rates and an important issue for discovery of new treatment interventions. The current practice of identifying eligible participants is highly constrained due to manual processing of disparate sources of unstructured patient data. Informatics-based approaches can simplify the complex task of evaluating patient’s eligibility for clinical trials. We show that an ontology-based approach can address the challenge of matching patients to suitable clinical trials. Methods: The free-text descriptions of clinical trial criteria as well as patient data were analysed. A set of common inclusion and exclusion criteria was identified through consultations with expert clinical trial coordinators. A research prototype was developed using Unstructured Information Management Architecture (UIMA) that identified SNOMED CT concepts in the patient data and clinical trial description. The SNOMED CT concepts model the standard clinical terminology that can be used to represent and evaluate patient’s inclusion/exclusion criteria for the clinical trial. Results: Our experimental research prototype describes a semi-automated method for filtering patient records using common clinical trial criteria. Our method simplified the patient recruitment process. The discussion with clinical trial coordinators showed that the efficiency in patient recruitment process measured in terms of information processing time could be improved by 25%. Conclusion: An UIMA-based approach can resolve complexities in patient recruitment for advanced prostate cancer clinical trials.
Resumo:
This research is a step forward in discovering knowledge from databases of complex structure like tree or graph. Several data mining algorithms are developed based on a novel representation called Balanced Optimal Search for extracting implicit, unknown and potentially useful information like patterns, similarities and various relationships from tree data, which are also proved to be advantageous in analysing big data. This thesis focuses on analysing unordered tree data, which is robust to data inconsistency, irregularity and swift information changes, hence, in the era of big data it becomes a popular and widely used data model.
Resumo:
Longitudinal studies of entrepreneurial career development are rare, and current knowledge of self-employment patterns and their relationships with individual difference characteristics is limited. In this study, the authors analyzed employment data from a subsample of 514 participants from the German Socio-Economic Panel study (1984–2008). Results of an optimal matching analysis indicated that a continuous self-employment pattern could be distinguished from four alternative employment patterns (change from employment to self-employment, full-time employees, part-time employees, and farmers). Results of a multinomial logistic regression analysis showed that certain socio-demographic characteristics (i.e., age and gender) and personality characteristics (i.e., conscientiousness and risk-taking propensity) were related to the likelihood of following a continuous self-employment pattern compared to the other employment patterns. Implications for future research on entrepreneurial career development are discussed.
Resumo:
The idea of extracting knowledge in process mining is a descendant of data mining. Both mining disciplines emphasise data flow and relations among elements in the data. Unfortunately, challenges have been encountered when working with the data flow and relations. One of the challenges is that the representation of the data flow between a pair of elements or tasks is insufficiently simplified and formulated, as it considers only a one-to-one data flow relation. In this paper, we discuss how the effectiveness of knowledge representation can be extended in both disciplines. To this end, we introduce a new representation of the data flow and dependency formulation using a flow graph. The flow graph solves the issue of the insufficiency of presenting other relation types, such as many-to-one and one-to-many relations. As an experiment, a new evaluation framework is applied to the Teleclaim process in order to show how this method can provide us with more precise results when compared with other representations.
Resumo:
State-of-the-art image-set matching techniques typically implicitly model each image-set with a Gaussian distribution. Here, we propose to go beyond these representations and model image-sets as probability distribution functions (PDFs) using kernel density estimators. To compare and match image-sets, we exploit Csiszar´ f-divergences, which bear strong connections to the geodesic distance defined on the space of PDFs, i.e., the statistical manifold. Furthermore, we introduce valid positive definite kernels on the statistical manifold, which let us make use of more powerful classification schemes to match image-sets. Finally, we introduce a supervised dimensionality reduction technique that learns a latent space where f-divergences reflect the class labels of the data. Our experiments on diverse problems, such as video-based face recognition and dynamic texture classification, evidence the benefits of our approach over the state-of-the-art image-set matching methods.