402 resultados para Gibbs energy


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In recent years, development of Unmanned Aerial Vehicles (UAV) has become a significant growing segment of the global aviation industry. These vehicles are developed with the intention of operating in regions where the presence of onboard human pilots is either too risky or unnecessary. Their popularity with both the military and civilian sectors have seen the use of UAVs in a diverse range of applications, from reconnaissance and surveillance tasks for the military, to civilian uses such as aid relief and monitoring tasks. Efficient energy utilisation on an UAV is essential to its functioning, often to achieve the operational goals of range, endurance and other specific mission requirements. Due to the limitations of the space available and the mass budget on the UAV, it is often a delicate balance between the onboard energy available (i.e. fuel) and achieving the operational goals. This thesis presents an investigation of methods for increasing the energy efficiency on UAVs. One method is via the development of a Mission Waypoint Optimisation (MWO) procedure for a small fixed-wing UAV, focusing on improving the onboard fuel economy. MWO deals with a pre-specified set of waypoints by modifying the given waypoints within certain limits to achieve its optimisation objectives of minimising/maximising specific parameters. A simulation model of a UAV was developed in the MATLAB Simulink environment, utilising the AeroSim Blockset and the in-built Aerosonde UAV block and its parameters. This simulation model was separately integrated with a multi-objective Evolutionary Algorithm (MOEA) optimiser and a Sequential Quadratic Programming (SQP) solver to perform single-objective and multi-objective optimisation procedures of a set of real-world waypoints in order to minimise the onboard fuel consumption. The results of both procedures show potential in reducing fuel consumption on a UAV in a ight mission. Additionally, a parallel Hybrid-Electric Propulsion System (HEPS) on a small fixedwing UAV incorporating an Ideal Operating Line (IOL) control strategy was developed. An IOL analysis of an Aerosonde engine was performed, and the most efficient (i.e. provides greatest torque output at the least fuel consumption) points of operation for this engine was determined. Simulation models of the components in a HEPS were designed and constructed in the MATLAB Simulink environment. It was demonstrated through simulation that an UAV with the current HEPS configuration was capable of achieving a fuel saving of 6.5%, compared to the ICE-only configuration. These components form the basis for the development of a complete simulation model of a Hybrid-Electric UAV (HEUAV).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gait energy images (GEIs) and its variants form the basis of many recent appearance-based gait recognition systems. The GEI combines good recognition performance with a simple implementation, though it suffers problems inherent to appearance-based approaches, such as being highly view dependent. In this paper, we extend the concept of the GEI to 3D, to create what we call the gait energy volume, or GEV. A basic GEV implementation is tested on the CMU MoBo database, showing improvements over both the GEI baseline and a fused multi-view GEI approach. We also demonstrate the efficacy of this approach on partial volume reconstructions created from frontal depth images, which can be more practically acquired, for example, in biometric portals implemented with stereo cameras, or other depth acquisition systems. Experiments on frontal depth images are evaluated on an in-house developed database captured using the Microsoft Kinect, and demonstrate the validity of the proposed approach.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Australian Government is about to release Australia’s first sustainable population policy. Sustainable population growth, among other things, implies sustainable energy demand. Current modelling of future energy demand both in Australia and by agencies such as the International Energy Agency sees population growth as one of the key drivers of energy demand. Simply increasing the demand for energy in response to population policy is sustainable only if there is a radical restructuring of the energy system away from energy sources associated with environmental degradation towards one more reliant on renewable fuels and less reliant on fossil fuels. Energy policy can also address the present nexus between energy consumption per person and population growth through an aggressive energy efficiency policy. The paper considers the link between population policies and energy policies and considers how the overall goal of sustainability can be achieved. The methods applied in this analysis draw on the literature of sustainable development to develop elements of an energy planning framework to support a sustainable population policy. Rather than simply accept that energy demand is a function of population increase moderated by an assumed rate of energy efficiency improvement, the focus is on considering what rate of energy efficiency improvement is necessary to significantly reduce the standard connections between population growth and growth in energy demand and what policies are necessary to achieve this situation. Energy efficiency policies can only moderate unsustainable aspects of energy demand and other policies are essential to restructure existing energy systems into on-going sustainable forms. Policies to achieve these objectives are considered. This analysis shows that energy policy, population policy and sustainable development policies are closely integrated. Present policy and planning agencies do not reflect this integration and energy and population policies in Australia have largely developed independently and whether the outcome is sustainable is largely a matter of chance. A genuinely sustainable population policy recognises the inter-dependence between population and energy policies and it is essential that this is reflected in integrated policy and planning agencies

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Australian Government is about to release Australia’s first sustainable population policy. Sustainable population growth, among other things, implies sustainable energy demand. Current modelling of future energy demand both in Australia and by agencies such as the International Energy Agency sees population growth as one of the key drivers of energy demand. Simply increasing the demand for energy in response to population policy is sustainable only if there is a radical restructuring of the energy system away from energy sources associated with environmental degradation towards one more reliant on renewable fuels and less reliant on fossil fuels. Energy policy can also address the present nexus between energy consumption per person and population growth through an aggressive energy efficiency policy. The paper considers the link between population policies and energy policies and considers how the overall goal of sustainability can be achieved. The methods applied in this analysis draw on the literature of sustainable development to develop elements of an energy planning framework to support a sustainable population policy. Rather than simply accept that energy demand is a function of population increase moderated by an assumed rate of energy efficiency improvement, the focus is on considering what rate of energy efficiency improvement is necessary to significantly reduce the standard connections between population growth and growth in energy demand and what policies are necessary to achieve this situation. Energy efficiency policies can only moderate unsustainable aspects of energy demand and other policies are essential to restructure existing energy systems into on-going sustainable forms. Policies to achieve these objectives are considered. This analysis shows that energy policy, population policy and sustainable development policies are closely integrated. Present policy and planning agencies do not reflect this integration and energy and population policies in Australia have largely developed independently and whether the outcome is sustainable is largely a matter of chance. A genuinely sustainable population policy recognises the inter-dependence between population and energy policies and it is essential that this is reflected in integrated policy and planning agencies

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The idea of body weight regulation implies that a biological mechanism exerts control over energy expenditure and food intake. This is a central tenet of energy homeostasis. However, the source and identity of the controlling mechanism have not been identified, although it is often presumed to be some long-acting signal related to body fat, such as leptin. Using a comprehensive experimental platform, we have investigated the relationship between biological and behavioural variables in two separate studies over a 12-week intervention period in obese adults (total n 92). All variables have been measured objectively and with a similar degree of scientific control and precision, including anthropometric factors, body composition, RMR and accumulative energy consumed at individual meals across the whole day. Results showed that meal size and daily energy intake (EI) were significantly correlated with fat-free mass (FFM, P values ,0·02–0·05) but not with fat mass (FM) or BMI (P values 0·11–0·45) (study 1, n 58). In study 2 (n 34), FFM (but not FM or BMI) predicted meal size and daily EI under two distinct dietary conditions (high-fat and low-fat). These data appear to indicate that, under these circumstances, some signal associated with lean mass (but not FM) exerts a determining effect over self-selected food consumption. This signal may be postulated to interact with a separate class of signals generated by FM. This finding may have implications for investigations of the molecular control of food intake and body weight and for the management of obesity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we consider the implementation of time and energy efficient trajectories onto a test-bed autonomous underwater vehicle. The trajectories are losely connected to the results of the application of the maximum principle to the controlled mechanical system. We use a numerical algorithm to compute efficient trajectories designed using geometric control theory to optimize a given cost function. Experimental results are shown for the time minimization problem.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There is a need for decision support tools that integrate energy simulation into early design in the context of Australian practice. Despite the proliferation of simulation programs in the last decade, there are no ready-to-use applications that cater specifically for the Australian climate and regulations. Furthermore, the majority of existing tools focus on achieving interaction with the design domain through model-based interoperability, and largely overlook the issue of process integration. This paper proposes an energy-oriented design environment that both accommodates the Australian context and provides interactive and iterative information exchanges that facilitate feedback between domains. It then presents the structure for DEEPA, an openly customisable system that couples parametric modelling and energy simulation software as a means of developing a decision support tool to allow designers to rapidly and flexibly assess the performance of early design alternatives. Finally, it discusses the benefits of developing a dynamic and concurrent performance evaluation process that parallels the characteristics and relationships of the design process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Emerging from the challenge to reduce energy consumption in buildings is the need for energy simulation to be used more effectively to support integrated decision making in early design. As a critical response to a Green Star case study, we present DEEPA, a parametric modeling framework that enables architects and engineers to work at the same semantic level to generate shared models for energy simulation. A cloud-based toolkit provides web and data services for parametric design software that automate the process of simulating and tracking design alternatives, by linking building geometry more directly to analysis inputs. Data, semantics, models and simulation results can be shared on the fly. This allows the complex relationships between architecture, building services and energy consumption to be explored in an integrated manner, and decisions to be made collaboratively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In face of the increasing concern on global warming and climate change, the interests in the utilization of solar energy for building operation are also rapidly growing. In this paper, the importance of using renewable energy in building operations is first discussed. The potential use of solar energy is then reviewed. Possible applications of solar energy in building operation are also discussed, including the use of solar energy in the forms of daylighting, hot water heating, space heating and cooling and building-integrated photovoltaics. Finally, the research activities in the utilization of solar energy for space cooling at QUT are highlighted.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanoscale science is growing evermore important on a global scale and is widely seen as playing an integral part in the growth of future world economies. The daunting energy crisis we are facing could be solved not only by new and improved ways of getting energy directly from the sun, but also by saving power thanks to advancements in electronics and sensors. New, cheap dye-sensitized and polymer solar cells hold the promise of environmentally friendly and simple production methods, along with mechanical flexibility and low weight, matching the conditions for a widespread deployment of this technology. Cheap sensors based on nanomaterials can make a fundamental contribution to the reduction of greenhouse gas emissions, allowing the creation of large sensor networks to monitor countries and cities, improving our quality of life. Nanowires and nano-platelets of metal oxides are at the forefront of the research to improve sensitivity and reduce the power consumption in gas sensors. Nanoelectronics is the next step in the electronic roadmap, with many devices currently in production already containing components smaller than 100 nm. Molecules and conducting polymers are at the forefront of this research with the goal of reducing component size through the use of cheap and environmentally friendly production methods. This, and the coming steps that will eventually bring the individual circuit element close to the ultimate limit of the atomic level, are expected to deliver better devices with reduced power consumption.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The issue of a more sustainable environment has been the aim of many governments and institutions for decades. Current research and literature has shown the continuing impact of global development and population increases on the planet as a whole. Issues such as carbon emissions, global warming, resource sustainability, industrial pollution, waste management and the decline in scarce resources, including food, are now realities and are being addressed at various levels. All levels of government, business and the public now equally share responsibility for the continued sustainable environment in general. Although these issues of global warming, climate change and the overuse of scarce resources are well documented, and constantly covered in all media forms, public attitudes to these issues vary significantly. Despite being aware of these issues many individuals consider that the problem is one for governments to tackle and that their individual efforts are not important or necessary. In many cases individuals are concerned with sustainability, but are either not in the position to take action due to economic circumstances or are not prepared to offset sustainability gains with personal interests...

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper investigates energy saving potential of commercial building by living wall and green façade system using Envelope Thermal Transfer Value (ETTV) equation in Sub-tropical climate of Australia. Energy saving of four commercial buildings was quantified by applying living wall and green façade system to the west facing wall. A field experimental facility, from which temperature data of living wall system was collected, was used to quantify wall temperatures and heat gain under controlled conditions. The experimental parameters were accumulated with extensive data of existing commercial building to quantify energy saving. Based on temperature data of living wall system comprised of Australian native plants, equivalent temperature of living wall system has been computed. Then, shading coefficient of plants in green façade system has been included in mathematical equation and in graphical analysis. To minimize the air-conditioned load of commercial building, therefore to minimize the heat gain of commercial building, an analysis of building heat gain reduction by living wall and green façade system has been performed. Overall, cooling energy performance of commercial building before and after living wall and green façade system application has been examined. The quantified energy saving showed that only living wall system on opaque part of west facing wall can save 8-13 % of cooling energy consumption where as only green façade system on opaque part of west facing wall can save 9.5-18% cooling energy consumption of commercial building. Again, green façade system on fenestration system on west facing wall can save 28-35 % of cooling energy consumption where as combination of both living wall on opaque part of west facing wall and green façade on fenestration system on west facing wall can save 35-40% cooling energy consumption of commercial building in sub-tropical climate of Australia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Zero energy buildings (ZEB) and zero energy homes (ZEH) are a current hot topic globally for policy makers (what are the benefits and costs), designers (how do we design them), the construction industry (can we build them), marketing (will consumers buy them) and researchers (do they work and what are the implications). This paper presents initial findings from actual measured data from a 9 star (as built), off-ground detached family home constructed in south-east Queensland in 2008. The integrated systems approach to the design of the house is analysed in each of its three main goals: maximising the thermal performance of the building envelope, minimising energy demand whilst maintaining energy service levels, and implementing a multi-pronged low carbon approach to energy supply. The performance outcomes of each of these stages are evaluated against definitions of Net Zero Carbon / Net Zero Emissions (Site and Source) and Net Zero Energy (onsite generation vs primary energy imports). The paper will conclude with a summary of the multiple benefits of combining very high efficiency building envelopes with diverse energy management strategies: a robustness, resilience, affordability and autonomy not generally seen in housing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A zero-energy home (ZEH) is a residential dwelling that generates as much energy annually from onsite renewable sources, as it consumes in its operation. A positive energy home (PEH) generates more energy than it consumes. The key design and construction elements, and costs and benefits of such buildings, are the subject of increasing research globally. Approaching this topic from the perspective of the role of such homes in the planning and development ‘supply chain’, this paper presents the measured outcomes of a PEH and discusses urban design implications. Using twelve months of detailed performance data of an occupied sub-tropical home, the paper analyses the design approach and performance outcomes that enable it to be classified as ‘positive energy’. Second, it analyses both the urban design strategies that assisted the house in achieving its positive energy status, and the impacts of such housing on urban design and infrastructure. Third, the triple bottom line implications are discussed from the viewpoint of both the individual household and the broader community. The paper concludes with recommendations for research areas required to further underpin and quantify the role of ZEHs and PEHs in enabling and supporting the economic, social and ecological sustainability of urban developments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper investigates cooling energy performance of commercial building before and after green roof and living wall application based on integrated building heat gain model developed from Overall Thermal Transfer Value (OTTV) of building wall and steady state heat transfer process of roof in sub-tropical climate. Using the modelled equation and eQUEST energy simulation tool, commercial building envelope parameters and relevant heat gain parameters have been accumulated to analyse the heat gain and cooling energy consumption of commercial building. Real life commercial building envelope and air-conditioned load data for the sub-tropical climate zone have been collected and compared with the modelled analysis. Relevant temperature data required for living wall and green roof analysis have been collected from experimental setup comprised of both green roof and west facing living wall. Then, Commercial building heat flux and cooling energy performance before and after green roof and living wall application have been scrutinized.