161 resultados para Geometry images
Resumo:
Cells respond to various biochemical and physical cues during wound–healing and tumour progression. In vitro assays used to study these processes are typically conducted in one particular geometry and it is unclear how the assay geometry affects the capacity of cell populations to spread, or whether the relevant mechanisms, such as cell motility and cell proliferation, are somehow sensitive to the geometry of the assay. In this work we use a circular barrier assay to characterise the spreading of cell populations in two different geometries. Assay 1 describes a tumour–like geometry where a cell population spreads outwards into an open space. Assay 2 describes a wound–like geometry where a cell population spreads inwards to close a void. We use a combination of discrete and continuum mathematical models and automated image processing methods to obtain independent estimates of the effective cell diffusivity, D, and the effective cell proliferation rate, λ. Using our parameterised mathematical model we confirm that our estimates of D and λ accurately predict the time–evolution of the location of the leading edge and the cell density profiles for both assay 1 and assay 2. Our work suggests that the effective cell diffusivity is up to 50% lower for assay 2 compared to assay 1, whereas the effective cell proliferation rate is up to 30% lower for assay 2 compared to assay 1.
Resumo:
Robust facial expression recognition (FER) under occluded face conditions is challenging. It requires robust algorithms of feature extraction and investigations into the effects of different types of occlusion on the recognition performance to gain insight. Previous FER studies in this area have been limited. They have spanned recovery strategies for loss of local texture information and testing limited to only a few types of occlusion and predominantly a matched train-test strategy. This paper proposes a robust approach that employs a Monte Carlo algorithm to extract a set of Gabor based part-face templates from gallery images and converts these templates into template match distance features. The resulting feature vectors are robust to occlusion because occluded parts are covered by some but not all of the random templates. The method is evaluated using facial images with occluded regions around the eyes and the mouth, randomly placed occlusion patches of different sizes, and near-realistic occlusion of eyes with clear and solid glasses. Both matched and mis-matched train and test strategies are adopted to analyze the effects of such occlusion. Overall recognition performance and the performance for each facial expression are investigated. Experimental results on the Cohn-Kanade and JAFFE databases demonstrate the high robustness and fast processing speed of our approach, and provide useful insight into the effects of occlusion on FER. The results on the parameter sensitivity demonstrate a certain level of robustness of the approach to changes in the orientation and scale of Gabor filters, the size of templates, and occlusions ratios. Performance comparisons with previous approaches show that the proposed method is more robust to occlusion with lower reductions in accuracy from occlusion of eyes or mouth.
Resumo:
Recent advances suggest that encoding images through Symmetric Positive Definite (SPD) matrices and then interpreting such matrices as points on Riemannian manifolds can lead to increased classification performance. Taking into account manifold geometry is typically done via (1) embedding the manifolds in tangent spaces, or (2) embedding into Reproducing Kernel Hilbert Spaces (RKHS). While embedding into tangent spaces allows the use of existing Euclidean-based learning algorithms, manifold shape is only approximated which can cause loss of discriminatory information. The RKHS approach retains more of the manifold structure, but may require non-trivial effort to kernelise Euclidean-based learning algorithms. In contrast to the above approaches, in this paper we offer a novel solution that allows SPD matrices to be used with unmodified Euclidean-based learning algorithms, with the true manifold shape well-preserved. Specifically, we propose to project SPD matrices using a set of random projection hyperplanes over RKHS into a random projection space, which leads to representing each matrix as a vector of projection coefficients. Experiments on face recognition, person re-identification and texture classification show that the proposed approach outperforms several recent methods, such as Tensor Sparse Coding, Histogram Plus Epitome, Riemannian Locality Preserving Projection and Relational Divergence Classification.
Resumo:
This paper describes a novel system for automatic classification of images obtained from Anti-Nuclear Antibody (ANA) pathology tests on Human Epithelial type 2 (HEp-2) cells using the Indirect Immunofluorescence (IIF) protocol. The IIF protocol on HEp-2 cells has been the hallmark method to identify the presence of ANAs, due to its high sensitivity and the large range of antigens that can be detected. However, it suffers from numerous shortcomings, such as being subjective as well as time and labour intensive. Computer Aided Diagnostic (CAD) systems have been developed to address these problems, which automatically classify a HEp-2 cell image into one of its known patterns (eg. speckled, homogeneous). Most of the existing CAD systems use handpicked features to represent a HEp-2 cell image, which may only work in limited scenarios. We propose a novel automatic cell image classification method termed Cell Pyramid Matching (CPM), which is comprised of regional histograms of visual words coupled with the Multiple Kernel Learning framework. We present a study of several variations of generating histograms and show the efficacy of the system on two publicly available datasets: the ICPR HEp-2 cell classification contest dataset and the SNPHEp-2 dataset.
Resumo:
Person re-identification is particularly challenging due to significant appearance changes across separate camera views. In order to re-identify people, a representative human signature should effectively handle differences in illumination, pose and camera parameters. While general appearance-based methods are modelled in Euclidean spaces, it has been argued that some applications in image and video analysis are better modelled via non-Euclidean manifold geometry. To this end, recent approaches represent images as covariance matrices, and interpret such matrices as points on Riemannian manifolds. As direct classification on such manifolds can be difficult, in this paper we propose to represent each manifold point as a vector of similarities to class representers, via a recently introduced form of Bregman matrix divergence known as the Stein divergence. This is followed by using a discriminative mapping of similarity vectors for final classification. The use of similarity vectors is in contrast to the traditional approach of embedding manifolds into tangent spaces, which can suffer from representing the manifold structure inaccurately. Comparative evaluations on benchmark ETHZ and iLIDS datasets for the person re-identification task show that the proposed approach obtains better performance than recent techniques such as Histogram Plus Epitome, Partial Least Squares, and Symmetry-Driven Accumulation of Local Features.
Resumo:
Introduction Standing radiographs are the ‘gold standard’ for clinical assessment of adolescent idiopathic scoliosis (AIS), with the Cobb Angle used to measure the severity and progression of the scoliotic curve. Supine imaging modalities can provide valuable 3D information on scoliotic anatomy, however, due to changes in gravitational loading direction, the geometry of the spine alters between the supine and standing position which in turn affects the Cobb Angle measurement. Previous studies have consistently reported a 7-10° [1-3] Cobb Angle increase from supine to standing, however, none have reported the effect of endplate pre-selection and which (if any) curve parameters affect the supine to standing Cobb Angle difference. Methods Female AIS patients with right-sided thoracic major curves were included in the retrospective study. Clinically measured Cobb Angles from existing standing coronal radiographs and fulcrum bending radiographs [4] were compared to existing low-dose supine CT scans taken within 3 months of the reference radiograph. Reformatted coronal CT images were used to measure Cobb Angle variability with and without endplate pre-selection (end-plates selected on the radiographs used on the CT images). Inter and intra-observer measurement variability was assessed. Multi-linear regression was used to investigate whether there was a relationship between supine to standing Cobb Angle change and patient characteristics (SPSS, v.21, IBM, USA). Results Fifty-two patients were included, with mean age of 14.6 (SD 1.8) years; all curves were Lenke Type 1 with mean Cobb Angle on supine CT of 42° (SD 6.4°) and 52° (SD 6.7°) on standing radiographs. The mean fulcrum bending Cobb Angle for the group was 22.6° (SD 7.5°). The 10° increase from supine to standing is consistent with existing literature. Pre-selecting vertebral endplates was found to increase the Cobb Angle difference by a mean 2° (range 0-9°). Multi-linear regression revealed a statistically significant relationship between supine to standing Cobb Angle change with: fulcrum flexibility (p=0.001), age (p=0.027) and standing Cobb Angle (p<0.001). In patients with high fulcrum flexibility scores, the supine to standing Cobb Angle change was as great as 20°.The 95% confidence intervals for intra-observer and inter-observer measurement variability were 3.1° and 3.6°, respectively. Conclusion There is a statistically significant relationship between supine to standing Cobb Angle change and fulcrum flexibility. Therefore, this difference can be considered a measure of spinal flexibility. Pre-selecting vertebral endplates causes only minor changes.
Resumo:
This report studies an algebraic equation whose solution gives the image system of a source of light as seen by an observer inside a reflecting spherical surface. The equation is looked at numerically using GeoGebra. Under the hypothesis that our galaxy is enveloped by a reflecting interface this becomes a possible model for many mysterious extra galactic observations.
Resumo:
The proliferation of news reports published in online websites and news information sharing among social media users necessitates effective techniques for analysing the image, text and video data related to news topics. This paper presents the first study to classify affective facial images on emerging news topics. The proposed system dynamically monitors and selects the current hot (of great interest) news topics with strong affective interestingness using textual keywords in news articles and social media discussions. Images from the selected hot topics are extracted and classified into three categorized emotions, positive, neutral and negative, based on facial expressions of subjects in the images. Performance evaluations on two facial image datasets collected from real-world resources demonstrate the applicability and effectiveness of the proposed system in affective classification of facial images in news reports. Facial expression shows high consistency with the affective textual content in news reports for positive emotion, while only low correlation has been observed for neutral and negative. The system can be directly used for applications, such as assisting editors in choosing photos with a proper affective semantic for a certain topic during news report preparation.
Resumo:
Theoretical and experimental results associated with the studies of different properties of surface-type waves (SW) in plasma-like medium-metal structures are reviewed. The propagation of surface waves in the Voigt geometry (the SW propagate across the external magnetic field, which is parallel to the interface) is considered. Various problems dealing with the linear properties of the SW (dispersion characteristics, electromagnetic fields topography, influence of the inhomogeneity of the medium, etc.); excitation mechanisms of the plasma-metal waveguide structures (parametric, drift, diffraction, etc. mechanisms); nonlinear effects associated with SW propagation (higher harmonics generation, self-interaction, nonlinear damping, nonlinear interactions, etc.) are presented. In many cases the results are valid for both gaseous and solid-state plasmas. © 1999 Elsevier Science B.V. All rights reserved.
Resumo:
Age-related Macular Degeneration (AMD) is one of the major causes of vision loss and blindness in ageing population. Currently, there is no cure for AMD, however early detection and subsequent treatment may prevent the severe vision loss or slow the progression of the disease. AMD can be classified into two types: dry and wet AMDs. The people with macular degeneration are mostly affected by dry AMD. Early symptoms of AMD are formation of drusen and yellow pigmentation. These lesions are identified by manual inspection of fundus images by the ophthalmologists. It is a time consuming, tiresome process, and hence an automated diagnosis of AMD screening tool can aid clinicians in their diagnosis significantly. This study proposes an automated dry AMD detection system using various entropies (Shannon, Kapur, Renyi and Yager), Higher Order Spectra (HOS) bispectra features, Fractional Dimension (FD), and Gabor wavelet features extracted from greyscale fundus images. The features are ranked using t-test, Kullback–Lieber Divergence (KLD), Chernoff Bound and Bhattacharyya Distance (CBBD), Receiver Operating Characteristics (ROC) curve-based and Wilcoxon ranking methods in order to select optimum features and classified into normal and AMD classes using Naive Bayes (NB), k-Nearest Neighbour (k-NN), Probabilistic Neural Network (PNN), Decision Tree (DT) and Support Vector Machine (SVM) classifiers. The performance of the proposed system is evaluated using private (Kasturba Medical Hospital, Manipal, India), Automated Retinal Image Analysis (ARIA) and STructured Analysis of the Retina (STARE) datasets. The proposed system yielded the highest average classification accuracies of 90.19%, 95.07% and 95% with 42, 54 and 38 optimal ranked features using SVM classifier for private, ARIA and STARE datasets respectively. This automated AMD detection system can be used for mass fundus image screening and aid clinicians by making better use of their expertise on selected images that require further examination.
Resumo:
Radiographs are commonly used to assess articular reduction of the distal tibia (pilon) fractures postoperatively, but may reveal malreductions inaccurately. While Magnetic Resonance Imaging (MRI) and Computed Tomography (CT) are potential 3D alternatives they generate metal-related artifacts. This study aims to quantify the artifact size from orthopaedic screws using CT, 1.5T and 3T MRI data. Three screws were inserted into one intact human cadaver ankle specimen proximal to and along the distal articular surface, then CT, 1.5T and 3T MRI scanned. Four types of screws were investigated: titanium alloy (TA), stainless steel (SS) (Ø = 3.5 mm), cannulated TA (CTA) and cannulated SS (CSS)(Ø = 4.0 mm, Ø empty core = 2.6 mm). 3D artifact models were reconstructed using adaptive thresholding. The artifact size was measured by calculating the perpendicular distance from the central screw axis to the boundary of the artifact in four anatomical directions with respect to the distal tibia. The artifact sizes (in the order of TA, SS, CTA and CSS) from CT were 2.0 mm, 2.6 mm, 1.6 mm and 2.0 mm; from 1.5T MRI they were 3.7 mm, 10.9 mm, 2.9 mm, and 9 mm; and 3T MRI they were 4.4 mm, 15.3 mm, 3.8 mm, and 11.6 mm respectively. Therefore, CT can be used as long as the screws are at a safe distance of about 2 mm from the articular surface. MRI can be used if the screws are at least 3 mm away from the articular surface except SS and CSS. Artifacts from steel screws were too large thus obstructed the pilon from being visualised in MRI. Significant differences (P < 0.05) were found in the size of artifacts between all imaging modalities, screw types and material types, except 1.5T versus 3T MRI for the SS screws (P = 0.063). CTA screws near the joint surface can improve postoperative assessment in CT and MRI. MRI presents a favourable non-ionising alternative when using titanium hardware. Since these factors may influence the quality of postoperative assessment, potential improvements in operative techniques should be considered.
Resumo:
The along-track stereo images of Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) sensor with 15 m resolution were used to generate Digital Elevation Model (DEM) on an area with low and near Mean Sea Level (MSL) elevation in Johor, Malaysia. The absolute DEM was generated by using the Rational Polynomial Coefficient (RPC) model which was run on ENVI 4.8 software. In order to generate the absolute DEM, 60 Ground Control Pointes (GCPs) with almost vertical accuracy less than 10 meter extracted from topographic map of the study area. The assessment was carried out on uncorrected and corrected DEM by utilizing dozens of Independent Check Points (ICPs). Consequently, the uncorrected DEM showed the RMSEz of ± 26.43 meter which was decreased to the RMSEz of ± 16.49 meter for the corrected DEM after post-processing. Overall, the corrected DEM of ASTER stereo images met the expectations.
Resumo:
Background Supine imaging modalities provide valuable 3D information on scoliotic anatomy, but the altered spine geometry between the supine and standing positions affects the Cobb angle measurement. Previous studies report a mean 7°-10° Cobb angle increase from supine to standing, but none have reported the effect of endplate pre-selection or whether other parameters affect this Cobb angle difference. Methods Cobb angles from existing coronal radiographs were compared to those on existing low-dose CT scans taken within three months of the reference radiograph for a group of females with adolescent idiopathic scoliosis. Reformatted coronal CT images were used to measure supine Cobb angles with and without endplate pre-selection (end-plates selected from the radiographs) by two observers on three separate occasions. Inter and intra-observer measurement variability were assessed. Multi-linear regression was used to investigate whether there was a relationship between supine to standing Cobb angle change and eight variables: patient age, mass, standing Cobb angle, Risser sign, ligament laxity, Lenke type, fulcrum flexibility and time delay between radiograph and CT scan. Results Fifty-two patients with right thoracic Lenke Type 1 curves and mean age 14.6 years (SD 1.8) were included. The mean Cobb angle on standing radiographs was 51.9° (SD 6.7). The mean Cobb angle on supine CT images without pre-selection of endplates was 41.1° (SD 6.4). The mean Cobb angle on supine CT images with endplate pre-selection was 40.5° (SD 6.6). Pre-selecting vertebral endplates increased the mean Cobb change by 0.6° (SD 2.3, range −9° to 6°). When free to do so, observers chose different levels for the end vertebrae in 39% of cases. Multi-linear regression revealed a statistically significant relationship between supine to standing Cobb change and fulcrum flexibility (p = 0.001), age (p = 0.027) and standing Cobb angle (p < 0.001). The 95% confidence intervals for intra-observer and inter-observer measurement variability were 3.1° and 3.6°, respectively. Conclusions Pre-selecting vertebral endplates causes minor changes to the mean supine to standing Cobb change. There is a statistically significant relationship between supine to standing Cobb change and fulcrum flexibility such that this difference can be considered a potential alternative measure of spinal flexibility.
Resumo:
This paper presents an online, unsupervised training algorithm enabling vision-based place recognition across a wide range of changing environmental conditions such as those caused by weather, seasons, and day-night cycles. The technique applies principal component analysis to distinguish between aspects of a location’s appearance that are condition-dependent and those that are condition-invariant. Removing the dimensions associated with environmental conditions produces condition-invariant images that can be used by appearance-based place recognition methods. This approach has a unique benefit – it requires training images from only one type of environmental condition, unlike existing data-driven methods that require training images with labelled frame correspondences from two or more environmental conditions. The method is applied to two benchmark variable condition datasets. Performance is equivalent or superior to the current state of the art despite the lesser training requirements, and is demonstrated to generalise to previously unseen locations.
Resumo:
In studies of germ cell transplantation, measureing tubule diameters and counting cells from different populations using antibodies as markers are very important. Manual measurement of tubule sizes and cell counts is a tedious and sanity grinding work. In this paper, we propose a new boundary weighting based tubule detection method. We first enhance the linear features of the input image and detect the approximate centers of tubules. Next, a boundary weighting transform is applied to the polar transformed image of each tubule region and a circular shortest path is used for the boundary detection. Then, ellipse fitting is carried out for tubule selection and measurement. The algorithm has been tested on a dataset consisting of 20 images, each having about 20 tubules. Experiments show that the detection results of our algorithm are very close to the results obtained manually. © 2013 IEEE.