265 resultados para Gaseous diffusion plants.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fractional differential equations are becoming more widely accepted as a powerful tool in modelling anomalous diffusion, which is exhibited by various materials and processes. Recently, researchers have suggested that rather than using constant order fractional operators, some processes are more accurately modelled using fractional orders that vary with time and/or space. In this paper we develop computationally efficient techniques for solving time-variable-order time-space fractional reaction-diffusion equations (tsfrde) using the finite difference scheme. We adopt the Coimbra variable order time fractional operator and variable order fractional Laplacian operator in space where both orders are functions of time. Because the fractional operator is nonlocal, it is challenging to efficiently deal with its long range dependence when using classical numerical techniques to solve such equations. The novelty of our method is that the numerical solution of the time-variable-order tsfrde is written in terms of a matrix function vector product at each time step. This product is approximated efficiently by the Lanczos method, which is a powerful iterative technique for approximating the action of a matrix function by projecting onto a Krylov subspace. Furthermore an adaptive preconditioner is constructed that dramatically reduces the size of the required Krylov subspaces and hence the overall computational cost. Numerical examples, including the variable-order fractional Fisher equation, are presented to demonstrate the accuracy and efficiency of the approach.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A standard method for the numerical solution of partial differential equations (PDEs) is the method of lines. In this approach the PDE is discretised in space using �finite di�fferences or similar techniques, and the resulting semidiscrete problem in time is integrated using an initial value problem solver. A significant challenge when applying the method of lines to fractional PDEs is that the non-local nature of the fractional derivatives results in a discretised system where each equation involves contributions from many (possibly every) spatial node(s). This has important consequences for the effi�ciency of the numerical solver. First, since the cost of evaluating the discrete equations is high, it is essential to minimise the number of evaluations required to advance the solution in time. Second, since the Jacobian matrix of the system is dense (partially or fully), methods that avoid the need to form and factorise this matrix are preferred. In this paper, we consider a nonlinear two-sided space-fractional di�ffusion equation in one spatial dimension. A key contribution of this paper is to demonstrate how an eff�ective preconditioner is crucial for improving the effi�ciency of the method of lines for solving this equation. In particular, we show how to construct suitable banded approximations to the system Jacobian for preconditioning purposes that permit high orders and large stepsizes to be used in the temporal integration, without requiring dense matrices to be formed. The results of numerical experiments are presented that demonstrate the effectiveness of this approach.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Plant tissue culture is a technique that exploits the ability of many plant cells to revert to a meristematic state. Although originally developed for botanical research, plant tissue culture has now evolved into important commercial practices and has become a significant research tool in agriculture, horticulture and in many other areas of plant sciences. Plant tissue culture is the sterile culture of plant cells, tissues, or organs under aseptic conditions leading to cell multiplication or regeneration or organs and whole plants. The steps required to develop reliable systems for plant regeneration and their application in plant biotechnology are reviewed in countless books. Some of the major landmarks in the evolution of in vitro techniques are summarised in Table 5.1. In this chapter the current applications of this technology to agriculture, horticulture, forestry and plant breeding are briefly described with specific examples from Australian plants when applicable.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, the multi-term time-fractional wave diffusion equations are considered. The multiterm time fractional derivatives are defined in the Caputo sense, whose orders belong to the intervals [0,1], [1,2), [0,2), [0,3), [2,3) and [2,4), respectively. Some computationally effective numerical methods are proposed for simulating the multi-term time-fractional wave-diffusion equations. The numerical results demonstrate the effectiveness of theoretical analysis. These methods and techniques can also be extended to other kinds of the multi-term fractional time-space models with fractional Laplacian.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Generalized fractional partial differential equations have now found wide application for describing important physical phenomena, such as subdiffusive and superdiffusive processes. However, studies of generalized multi-term time and space fractional partial differential equations are still under development. In this paper, the multi-term time-space Caputo-Riesz fractional advection diffusion equations (MT-TSCR-FADE) with Dirichlet nonhomogeneous boundary conditions are considered. The multi-term time-fractional derivatives are defined in the Caputo sense, whose orders belong to the intervals [0, 1], [1, 2] and [0, 2], respectively. These are called respectively the multi-term time-fractional diffusion terms, the multi-term time-fractional wave terms and the multi-term time-fractional mixed diffusion-wave terms. The space fractional derivatives are defined as Riesz fractional derivatives. Analytical solutions of three types of the MT-TSCR-FADE are derived with Dirichlet boundary conditions. By using Luchko's Theorem (Acta Math. Vietnam., 1999), we proposed some new techniques, such as a spectral representation of the fractional Laplacian operator and the equivalent relationship between fractional Laplacian operator and Riesz fractional derivative, that enabled the derivation of the analytical solutions for the multi-term time-space Caputo-Riesz fractional advection-diffusion equations. © 2012.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we consider the variable order time fractional diffusion equation. We adopt the Coimbra variable order (VO) time fractional operator, which defines a consistent method for VO differentiation of physical variables. The Coimbra variable order fractional operator also can be viewed as a Caputo-type definition. Although this definition is the most appropriate definition having fundamental characteristics that are desirable for physical modeling, numerical methods for fractional partial differential equations using this definition have not yet appeared in the literature. Here an approximate scheme is first proposed. The stability, convergence and solvability of this numerical scheme are discussed via the technique of Fourier analysis. Numerical examples are provided to show that the numerical method is computationally efficient. Crown Copyright © 2012 Published by Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Multi-term time-fractional differential equations have been used for describing important physical phenomena. However, studies of the multi-term time-fractional partial differential equations with three kinds of nonhomogeneous boundary conditions are still limited. In this paper, a method of separating variables is used to solve the multi-term time-fractional diffusion-wave equation and the multi-term time-fractional diffusion equation in a finite domain. In the two equations, the time-fractional derivative is defined in the Caputo sense. We discuss and derive the analytical solutions of the two equations with three kinds of nonhomogeneous boundary conditions, namely, Dirichlet, Neumann and Robin conditions, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The common brown leafhopper Orosius orientalis (Hemiptera: Cicadellidae) is a polyphagous vector of a range of economically important pathogens, including phytoplasmas and viruses, which infect a diverse range of crops. Studies on the plant penetration behaviour by O. orientalis were conducted using the electrical penetration graph (EPG) technique to assist in the characterisation of pathogen acquisition and transmission. EPG waveforms representing different probing activities were acquired from adult O. orientalis probing in planta, using two host species, tobacco Nicotiana tabacum and bean Phaseolus vulgaris, and in vitro using a simple sucrose-based artificial diet. Five waveforms (O1–O5) were evident when O. orientalis fed on bean, whereas only four waveforms (O1–O4) and three waveforms (O1–O3) were observed when the leafhopper fed on tobacco and on the artificial diet, respectively. Both the mean duration of each waveform and waveform type differed markedly depending on the food substrate. Waveform O4 was not observed on the artificial diet and occurred relatively rarely on tobacco plants when compared with bean plants. Waveform O5 was only observed with leafhoppers probing on beans. The attributes of the waveforms and comparative analyses with previously published Hemipteran data are presented and discussed, but further characterisation studies will be needed to confirm our suggestions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Problems involving the solution of advection-diffusion-reaction equations on domains and subdomains whose growth affects and is affected by these equations, commonly arise in developmental biology. Here, a mathematical framework for these situations, together with methods for obtaining spatio-temporal solutions and steady states of models built from this framework, is presented. The framework and methods are applied to a recently published model of epidermal skin substitutes. Despite the use of Eulerian schemes, excellent agreement is obtained between the numerical spatio-temporal, numerical steady state, and analytical solutions of the model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In Australia, the spread and dominance of non-native plant species has been identified as a serious threat to rangeland biodiversity and ecosystem functioning. Rangelands extend over 70% of Australia’s land mass or more than 6 million km2. These rangelands consist of a diverse set of ecosystems including grasslands, shrub-lands, and woodlands spanning numerous climatic zones, ranging from arid to mesic. Because of the high economic, social, and environmental values, sustainable management of these vast landscapes is critical for Australia’s future. More than 2 million people live in these areas and major industries are ranching, mining, and tourism. In terms of biodiversity values, 53 of 85 of Australia’s biogeographical regions and 5 of 15 identified biodiversity hotspots are found in rangelands.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, a Langevin dynamics model of the diffusion of water in articular cartilage was developed. Numerical simulations of the translational dynamics of water molecules and their interaction with collagen fibers were used to study the quantitative relationship between the organization of the collagen fiber network and the diffusion tensor of water in model cartilage. Langevin dynamics was used to simulate water diffusion in both ordered and partially disordered cartilage models. In addition, an analytical approach was developed to estimate the diffusion tensor for a network comprising a given distribution of fiber orientations. The key findings are that (1) an approximately linear relationship was observed between collagen volume fraction and the fractional anisotropy of the diffusion tensor in fiber networks of a given degree of alignment, (2) for any given fiber volume fraction, fractional anisotropy follows a fiber alignment dependency similar to the square of the second Legendre polynomial of cos(θ), with the minimum anisotropy occurring at approximately the magic angle (θMA), and (3) a decrease in the principal eigenvalue and an increase in the transverse eigenvalues is observed as the fiber orientation angle θ progresses from 0◦ to 90◦. The corresponding diffusion ellipsoids are prolate for θ < θMA, spherical for θ ≈ θMA, and oblate for θ > θMA. Expansion of the model to include discrimination between the combined effects of alignment disorder and collagen fiber volume fraction on the diffusion tensor is discussed.