314 resultados para GENETIC


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Maize streak virus (MSV) contributes significantly to the problem of extremely low African maize yields. Whilst a diverse range of MSV and MSV-like viruses are endemic in sub-Saharan Africa and neighbouring islands, only a single group of maize-adapted variants - MSV subtypes A1 -A6 - causes severe enough disease in maize to influence yields substantially. In order to assist in designing effective strategies to control MSV in maize, a large survey covering 155 locations was conducted to assess the diversity, distribution and genetic characteristics of the Ugandan MSV-A population. PCR-restriction fragment-length polymorphism analyses of 391 virus isolates identified 49 genetic variants. Sixty-two full-genome sequences were determined, 52 of which were detectably recombinant. All but two recombinants contained predominantly MSV-A1-like sequences. Of the ten distinct recombination events observed, seven involved inter-MSV-A subtype recombination and three involved intra-MSV-A1 recombination. One of the intra-MSV-A1 recombinants, designated MSV-A1 UgIII, accounted for >60% of all MSV infections sampled throughout Uganda. Although recombination may be an important factor in the emergence of novel geminivirus variants, it is demonstrated that its characteristics in MSV are quite different from those observed in related African cassava-infecting geminivirus species. © 2007 SGM.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Psittacine beak and feather disease (PBFD) has a broad host range and is widespread in wild and captive psittacine populations in Asia, Africa, the Americas, Europe and Australasia. Beak and feather disease circovirus (BFDV) is the causative agent. BFDV has an ~2 kb single stranded circular DNA genome encoding just two proteins (Rep and CP). In this study we provide support for demarcation of BFDV strains by phylogenetic analysis of 65 complete genomes from databases and 22 new BFDV sequences isolated from infected psittacines in South Africa. We propose 94% genome-wide sequence identity as a strain demarcation threshold, with isolates sharing > 94% identity belonging to the same strain, and strain subtypes sharing> 98% identity. Currently, BFDV diversity falls within 14 strains, with five highly divergent isolates from budgerigars probably representing a new species of circovirus with three strains (budgerigar circovirus; BCV-A, -B and -C). The geographical distribution of BFDV and BCV strains is strongly linked to the international trade in exotic birds; strains with more than one host are generally located in the same geographical area. Lastly, we examined BFDV and BCV sequences for evidence of recombination, and determined that recombination had occurred in most BFDV and BCV strains. We established that there were two globally significant recombination hotspots in the viral genome: the first is along the entire intergenic region and the second is in the C-terminal portion of the CP ORF. The implications of our results for the taxonomy and classification of circoviruses are discussed. © 2011 SGM.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Deciding the appropriate population size and number of is- lands for distributed island-model genetic algorithms is often critical to the algorithm’s success. This paper outlines a method that automatically searches for good combinations of island population sizes and the number of islands. The method is based on a race between competing parameter sets, and collaborative seeding of new parameter sets. This method is applicable to any problem, and makes distributed genetic algorithms easier to use by reducing the number of user-set parameters. The experimental results show that the proposed method robustly and reliably finds population and islands settings that are comparable to those found with traditional trial-and-error approaches.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Distributed Genetic Algorithms (DGAs) designed for the Internet have to take its high communication cost into consideration. For island model GAs, the migration topology has a major impact on DGA performance. This paper describes and evaluates an adaptive migration topology optimizer that keeps the communication load low while maintaining high solution quality. Experiments on benchmark problems show that the optimized topology outperforms static or random topologies of the same degree of connectivity. The applicability of the method on real-world problems is demonstrated on a hard optimization problem in VLSI design.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Kallikrein (KLK) gene locus encodes a family of serine proteases and is the largest contiguous cluster of protease-encoding genes attributed an evolutionary age of 330 million years. The KLK locus has been implicated as a high susceptibility risk loci in numerous cancer studies through the last decade. The KLK3 gene already has established clinical relevance as a biomarker in prostate cancer prognosis through its encoded protein, prostate-specific antigen. Data mined through genome-wide association studies (GWAS) and next-generation sequencing point to many important candidate single nucleotide polymorphisms (SNPs) in KLK3 and other KLK genes. SNPs in the KLK locus have been found to be associated with several diseases including cancer, hypertension, cardiovascular disease and atopic dermatitis. Moreover, introducing a model incorporating SNPs to improve the efficiency of prostate-specific antigen in detecting malignant states of prostate cancer has been recently suggested. Establishing the functional relevance of these newly-discovered SNPs, and their interactions with each other, through in silico investigations followed by experimental validation, can accelerate the discovery of diagnostic and prognostic biomarkers. In this review, we discuss the various genetic association studies on the KLK loci identified either through candidate gene association studies or at the GWAS and post-GWAS front to aid researchers in streamlining their search for the most significant, relevant and therapeutically promising candidate KLK gene and/or SNP for future investigations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Kallikrein-related peptidase, KLK4, has been shown to be significantly overexpressed in prostate tumours in numerous studies and is suggested to be a potential biomarker for prostate cancer. KLK4 may also play a role in prostate cancer progression through its involvement in epithelial-mesenchymal transition, a more aggressive phenotype, and metastases to bone. It is well known that genetic variation has the potential to affect gene expression and/or various protein characteristics and hence we sought to investigate the possible role of single nucleotide polymorphisms (SNPs) in the KLK4 gene in prostate cancer. Assessment of 61 SNPs in the KLK4 locus (±10 kb) in approximately 1300 prostate cancer cases and 1300 male controls for associations with prostate cancer risk and/or prostate tumour aggressiveness (Gleason score <7 versus ≥7) revealed 7 SNPs to be associated with a decreased risk of prostate cancer at the Ptrend<0.05 significance level. Three of these SNPs, rs268923, rs56112930 and the HapMap tagSNP rs7248321, are located several kb upstream of KLK4; rs1654551 encodes a non-synonymous serine to alanine substitution at position 22 of the long isoform of the KLK4 protein, and the remaining 3 risk-associated SNPs, rs1701927, rs1090649 and rs806019, are located downstream of KLK4 and are in high linkage disequilibrium with each other (r2≥0.98). Our findings provide suggestive evidence of a role for genetic variation in the KLK4 locus in prostate cancer predisposition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Ureaplasmas are the most frequently isolated microorganisms from the amniotic fluid (AF) of pregnant women and can cause chronic infections that are difficult to eradicate with standard macrolide treatment. We tested the effects of erythromycin treatment on phenotypic and genotypic markers of ureaplasmal antimicrobial resistance in sheep. Method: At 50 days of gestation (d, term=145d) 12 pregnant ewes received intra-amniotic injections of U. parvum serovar 3 (erythromycin-sensitive, 2x104 colony-forming-units). At 100d ewes received: erythromycin treatment (500 mg, q3h for 4 days, IM, n=6) or no treatment (n=6). Fetuses were delivered surgically (125d) and AF and chorioamnion were collected for: culture, minimum inhibitory concentration (MIC) and minimum biofilm inhibitory concentration (MBIC) testing; 23S rRNA sequencing; and detection of macrolide-lincosamide-streptogramin resistance (MLSr) genes. Results: MICs of erythromycin, azithromycin and roxithromycin against AF isolates were low (range = 0.06 mg/L to 1.0 mg/L); however, chorioamnion isolates demonstrated increased resistance to roxithromycin (0.13 – 5.33 mg/L). 62.5% of chorioamnion ureaplasmas formed biofilms in vitro and mutations (125 nucleotides, 29.6%) were found in the 23S rRNA gene (domain V) of chorioamnion (but not AF) ureaplasmas. MLSr genes (ermB, msrC and msrD) were detected in 100% of chorioamnion isolates and only msrD was detected in AF isolates (40%). Conclusions: 23S rRNA mutations and MLSr genes occurred independently of erythromycin treatment, suggesting that the anatomical site of infection and microenvironment may exert selective pressures on ureaplasmas that cause genetic changes and alter antimicrobial sensitivity profiles. These results have serious implications for treatment of in utero infections.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Considerate amount of research has proposed optimization-based approaches employing various vibration parameters for structural damage diagnosis. The damage detection by these methods is in fact a result of updating the analytical structural model in line with the current physical model. The feasibility of these approaches has been proven. But most of the verification has been done on simple structures, such as beams or plates. In the application on a complex structure, like steel truss bridges, a traditional optimization process will cost massive computational resources and lengthy convergence. This study presents a multi-layer genetic algorithm (ML-GA) to overcome the problem. Unlike the tedious convergence process in a conventional damage optimization process, in each layer, the proposed algorithm divides the GA’s population into groups with a less number of damage candidates; then, the converged population in each group evolves as an initial population of the next layer, where the groups merge to larger groups. In a damage detection process featuring ML-GA, as parallel computation can be implemented, the optimization performance and computational efficiency can be enhanced. In order to assess the proposed algorithm, the modal strain energy correlation (MSEC) has been considered as the objective function. Several damage scenarios of a complex steel truss bridge’s finite element model have been employed to evaluate the effectiveness and performance of ML-GA, against a conventional GA. In both single- and multiple damage scenarios, the analytical and experimental study shows that the MSEC index has achieved excellent damage indication and efficiency using the proposed ML-GA, whereas the conventional GA only converges at a local solution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The giant freshwater prawn (Macrobrachium rosenbergii) or GFP is one of the most important freshwater crustacean species in the inland aquaculture sector of many tropical and subtropical countries. Since the 1990’s, there has been rapid global expansion of freshwater prawn farming, especially in Asian countries, with an average annual rate of increase of 48% between 1999 and 2001 (New, 2005). In Vietnam, GFP is cultured in a variety of culture systems, typically in integrated or rotational rice-prawn culture (Phuong et al., 2006) and has become one of the most common farmed aquatic species in the country, due to its ability to grow rapidly and to attract high market price and high demand. Despite potential for expanded production, sustainability of freshwater prawn farming in the region is currently threatened by low production efficiency and vulnerability of farmed stocks to disease. Commercial large scale and small scale GFP farms in Vietnam have experienced relatively low stock productivity, large size and weight variation, a low proportion of edible meat (large head to body ratio), scarcity of good quality seed stock. The current situation highlights the need for a systematic stock improvement program for GFP in Vietnam aimed at improving economically important traits in this species. This study reports on the breeding program for fast growth employing combined (between and within) family selection in giant freshwater prawn in Vietnam. The base population was synthesized using a complete diallel cross including 9 crosses from two local stocks (DN and MK strains) and a third exotic stock (Malaysian strain - MY). In the next three selection generations, matings were conducted between genetically unrelated brood stock to produce full-sib and (paternal) half-sib families. All families were produced and reared separately until juveniles in each family were tagged as a batch using visible implant elastomer (VIE) at a body size of approximately 2 g. After tags were verified, 60 to 120 juveniles chosen randomly from each family were released into two common earthen ponds of 3,500 m2 pond for a grow-out period of 16 to 18 weeks. Selection applied at harvest on body weight was a combined (between and within) family selection approach. 81, 89, 96 and 114 families were produced for the Selection line in the F0, F1, F2 and F3 generations, respectively. In addition to the Selection line, 17 to 42 families were produced for the Control group in each generation. Results reported here are based on a data set consisting of 18,387 body and 1,730 carcass records, as well as full pedigree information collected over four generations. Variance and covariance components were estimated by restricted maximum likelihood fitting a multi-trait animal model. Experiments assessed performance of VIE tags in juvenile GFP of different size classes and individuals tagged with different numbers of tags showed that juvenile GFP at 2 g were of suitable size for VIE tags with no negative effects evident on growth or survival. Tag retention rates were above 97.8% and tag readability rates were 100% with a correct assignment rate of 95% through to mature animal size of up to 170 g. Across generations, estimates of heritability for body traits (body weight, body length, cephalothorax length, abdominal length, cephalothorax width and abdominal width) and carcass weight traits (abdominal weight, skeleton-off weight and telson-off weight) were moderate and ranged from 0.14 to 0.19 and 0.17 to 0.21, respectively. Body trait heritabilities estimated for females were significantly higher than for males whereas carcass weight trait heritabilities estimated for females and males were not significantly different (P > 0.05). Maternal and common environmental effects for body traits accounted for 4 to 5% of the total variance and were greater in females (7 to 10%) than in males (4 to 5%). Genetic correlations among body traits were generally high in both sexes. Genetic correlations between body and carcass weight traits were also high in the mixed sexes. Average selection response (% per generation) for body weight (transformed to square root) estimated as the difference between the Selection and the Control group was 7.4% calculated from least squares means (LSMs), 7.0% from estimated breeding values (EBVs) and 4.4% calculated from EBVs between two consecutive generations. Favourable correlated selection responses (estimated from LSMs) were detected for other body traits (12.1%, 14.5%, 10.4%, 15.5% and 13.3% for body length, cephalothorax length, abdominal length, cephalothorax width and abdominal width, respectively) over three selection generations. Data in the second selection generation showed positive correlated responses for carcass weight traits (8.8%, 8.6% and 8.8% for abdominal weight, skeleton-off weight and telson-off weight, respectively). Data in the third selection generation showed that heritability for body traits were moderate and ranged from 0.06 to 0.11 and 0.11 to 0.22 at weeks 10 and 18, respectively. Body trait heritabilities estimated at week 10 were not significantly lower than at week 18. Genetic correlations between body traits within age and genetic correlations for body traits between ages were generally high. Overall our results suggest that growth rate responds well to the application of family selection and carcass weight traits can also be improved in parallel, using this approach. Moreover, selection for high growth rate in GFP can be undertaken successfully before full market size has been reached. The outcome of this study was production of an improved culture strain of GFP for the Vietnamese culture industry that will be trialed in real farm production environments to confirm the genetic gains identified in the experimental stock improvement program.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the real world there are many problems in network of networks (NoNs) that can be abstracted to a so-called minimum interconnection cut problem, which is fundamentally different from those classical minimum cut problems in graph theory. Thus, it is desirable to propose an efficient and effective algorithm for the minimum interconnection cut problem. In this paper we formulate the problem in graph theory, transform it into a multi-objective and multi-constraint combinatorial optimization problem, and propose a hybrid genetic algorithm (HGA) for the problem. The HGA is a penalty-based genetic algorithm (GA) that incorporates an effective heuristic procedure to locally optimize the individuals in the population of the GA. The HGA has been implemented and evaluated by experiments. Experimental results have shown that the HGA is effective and efficient.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Freshwater prawn (Macrobrachium rosenbergii) culture in the Western Hemisphere is primarily, if not entirely, derived from 36 individual prawns originally introduced to Hawaii from Malaysia in 1965 and 1966. Little information is available regarding genetic variation within and among cultured prawn stocks worldwide. The goal of the current study was to characterize genetic diversity in various prawn populations with emphasis on those cultured in North America. Five microsatellite loci were screened to estimate genetic diversity in two wild (Myanmar and India-wild) and seven cultured (Hawaii-1, Hawaii-2, India-cultured, Israel, Kentucky, Mississippi and Texas) populations. Average allelic richness ranged from 3.96 (Israel) to 20.45 (Myanmar). Average expected heterozygosity ranged from 0.580 (Israel) to 0.935 (Myanmar). Many of the cultured populations exhibited reduced genetic diversity when compared with the Myanmar and the India-cultured populations. Significant deficiency in heterozygotes was detected in the India-cultured, Mississippi and Kentucky populations (overall Fis estimated of 0.053, 0.067 and 0.108 respectively) reflecting moderate levels of inbreeding. Overall estimate of fixation index (Fst = 0.1569) revealed moderately high levels of differentiation among the populations. Outcome of this study provide a baseline assessment of genetic diversity in some available strains that will be useful for the development of breeding programmes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The study assessed natural levels and patterns of genetic variation in Arabian Gulf populations of a native pearl oyster to define wild population structure considering potential intrinsic and extrinsic factors that could influence any wild structure detected. The study was also the first attempt to develop microsatellite markers and to generate a genome survey sequence (GSS) dataset for the target species using next generation sequencing technology. The partial genome dataset generated has potential biotechnological applications and for pearl oyster farming in the future.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Migraine is a common neurological disease with a genetic basis affecting approximately 12% of the population. Pain during a migraine attack is associated with activation of the trigeminal nerve system, which carries pain signals from the meninges and the blood vessels infusing the meninges to the trigeminal nucleus in the brain stem. The release of inflammatory mediators following cortical spreading depression (CSD) may further promote and sustain the activation and sensitization of meningeal nociceptors, inducing the persistent throbbing headache characterised in migraine. Lymphotoxin α (LTA) is a cytokine secreted by lymphocytes and is a member of the tumour necrosis factor (TNF) family. Genetic variation with the TNF and LTA genes may contribute to threshold brain excitability, propagation of neuronal hyperexcitability and thus initiation and maintenance of a migraine attack. Three LTA variants rs2009658, rs2844482 and rs2229094 were identified in a recent pGWAS study conducted in the Norfolk Island population as being potentially implicated in migraine with nominally significant p values of p = 0.0093, p = 0.0088 and p = 0.033 respectively. To determine whether these SNPs played a role in migraine in a general outbred population these SNPs were gentoyped in a large case control Australian Caucasian population and tested for association with migraine. All three SNPs showed no association in our cohort (p > 0.05). Validation of GWAS data in independent case-controls cohorts is essential to establish risk validity within specific population groups. The importance of cytokines in modulating neural inflammation and pain threshold in addition to other studies showing associations between TNF-α and SNPs in the LTA gene with migraine, suggests that LTA could be an important factor contributing to migraine. Although the present study did not support a role for the tested LTA variants in migraine, investigation of other variants within the LTA gene is still warranted.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Migraine is a neurological disorder that affects the central nervous system causing painful attacks of headache. A genetic vulnerability and exposure to environmental triggers can influence the migraine phenotype. Migraine interferes in many facets of people’s daily life including employment commitments and their ability to look after their families resulting in a reduced quality of life. Identification of the biological processes that underlie this relatively common affliction has been difficult because migraine does not have any clearly identifiable pathology or structural lesion detectable by current medical technology. Theories to explain the symptoms of migraine have focused on the physiological mechanisms involved in the various phases of headache and include the vascular and neurogenic theories. In relation to migraine pathophysiology the trigeminovascular system and cortical spreading depression have also been implicated with supporting evidence from imaging studies and animal models. The objective of current research is to better understand the pathways and mechanisms involved in causing pain and headache to be able to target interventions. The genetic component of migraine has been teased apart using linkage studies and both candidate gene and genome-wide association studies, in family and case-control cohorts. Genomic regions that increase individual risk to migraine have been identified in neurological, vascular and hormonal pathways. This review discusses knowledge of the pathophysiology and genetic basis of migraine with the latest scientific evidence from genetic studies.