244 resultados para Fractional Laplacian
Resumo:
We report major and trace element composition, Sr–Nd isotopic and seismological data for a picrite–basalt–rhyolite suite from the northern Tarim uplift (NTU), northwest China. The samples were recovered from 13 boreholes at depths between 5,166 and 6,333 m. The picritic samples have high MgO (14.5–16.8 wt%, volatiles included) enriched in incompatible element and have high 87Sr/86Sr and low 143Nd/144Nd isotopic ratios (εNd (t) = −5.3; Sri = 0.707), resembling the Karoo high-Ti picrites. All the basaltic samples are enriched in TiO2 (2.1–3.2 wt%, volatiles free), have high FeOt abundances (11.27–15.75 wt%, volatiles free), are enriched in incompatible elements and have high Sr and low Nd isotopic ratios (Sri = 0.7049–0.7065; εNd (t) = −4.1 to −0.4). High Nb/La ratios (0.91–1.34) of basalts attest that they are mantle-derived magma with negligible crustal contamination. The rhyolite samples can be subdivided into two coeval groups with overlapping U–Pb zircon ages between 291 ± 4 and 272 ± 2 Ma. Group 1 rhyolites are enriched in Nb and Ta, have similar Nb/La, Nb/U, and Sr–Nd isotopic compositions to the associated basalts, implying that they are formed by fractional crystallization of the basalts. Group 2 rhyolites are depleted in Nb and Ta, have low Nb/La ratios, and have very high Sr and low Nd isotopic ratios, implying that crustal materials have been extensively, if not exclusively, involved in their source. The picrite–basalt–rhyolite suite from the NTU, together with Permian volcanic rocks from elsewhere Tarim basin, constitute a Large Igneous Province (LIP) that is characterized by large areal extent, rapid eruption, OIB-type chemical composition, and eruption of high temperature picritic magma. The Early Permian magmatism, which covered an area >300,000 km2, is therefore named the Tarim Flood Basalt.
A finite volume method for solving the two-sided time-space fractional advection-dispersion equation
Resumo:
We present a finite volume method to solve the time-space two-sided fractional advection-dispersion equation on a one-dimensional domain. The spatial discretisation employs fractionally-shifted Grünwald formulas to discretise the Riemann-Liouville fractional derivatives at control volume faces in terms of function values at the nodes. We demonstrate how the finite volume formulation provides a natural, convenient and accurate means of discretising this equation in conservative form, compared to using a conventional finite difference approach. Results of numerical experiments are presented to demonstrate the effectiveness of the approach.
Resumo:
Transport processes within heterogeneous media may exhibit non- classical diffusion or dispersion which is not adequately described by the classical theory of Brownian motion and Fick’s law. We consider a space-fractional advection-dispersion equation based on a fractional Fick’s law. Zhang et al. [Water Resources Research, 43(5)(2007)] considered such an equation with variable coefficients, which they dis- cretised using the finite difference method proposed by Meerschaert and Tadjeran [Journal of Computational and Applied Mathematics, 172(1):65-77 (2004)]. For this method the presence of variable coef- ficients necessitates applying the product rule before discretising the Riemann–Liouville fractional derivatives using standard and shifted Gru ̈nwald formulas, depending on the fractional order. As an alternative, we propose using a finite volume method that deals directly with the equation in conservative form. Fractionally-shifted Gru ̈nwald formulas are used to discretise the Riemann–Liouville fractional derivatives at control volume faces, eliminating the need for product rule expansions. We compare the two methods for several case studies, highlighting the convenience of the finite volume approach.
Resumo:
Many students of calculus are not aware that the calculus they have learned is a special case (integer order) of fractional calculus. Fractional calculus is the study of arbitrary order derivatives and integrals and their applications. The article begins by stating a naive question from a student in a paper by Larson (1974) and establishes, for polynomials and exponential functions, that they can be deformed into their derivative using the μ-th order fractional derivatives for 0<μ<1. Through the power of Excel we illustrate the continuous deformations dynamically through conditional formatting. Some applications are discussed and a connection made to mathematics education.