331 resultados para Fast dynamics
Resumo:
Use of ball projection machines in the acquisition of interceptive skill has recently been questioned. The use of projection machines in developmental and elite fast ball sports programmes is not a trivial issue, since they play a crucial role in reducing injury incidence in players and coaches. A compelling challenge for sports science is to provide theoretical principles to guide how and when projection machines might be used for acquisition of ball skills and preparation for competition in developmental and elite sport performance programmes. Here, we propose how principles from an ecological dynamics theoretical framework could be adopted by sports scientists, pedagogues and coaches to underpin the design of interventions, practice and training tasks, including the use of hybrid video-projection technologies. The assessment of representative learning design during practice may provide ways to optimize developmental programmes in fast ball sports and inform the principled use of ball projection machines.
Resumo:
Recently the application of the quasi-steady-state approximation (QSSA) to the stochastic simulation algorithm (SSA) was suggested for the purpose of speeding up stochastic simulations of chemical systems that involve both relatively fast and slow chemical reactions [Rao and Arkin, J. Chem. Phys. 118, 4999 (2003)] and further work has led to the nested and slow-scale SSA. Improved numerical efficiency is obtained by respecting the vastly different time scales characterizing the system and then by advancing only the slow reactions exactly, based on a suitable approximation to the fast reactions. We considerably extend these works by applying the QSSA to numerical methods for the direct solution of the chemical master equation (CME) and, in particular, to the finite state projection algorithm [Munsky and Khammash, J. Chem. Phys. 124, 044104 (2006)], in conjunction with Krylov methods. In addition, we point out some important connections to the literature on the (deterministic) total QSSA (tQSSA) and place the stochastic analogue of the QSSA within the more general framework of aggregation of Markov processes. We demonstrate the new methods on four examples: Michaelis–Menten enzyme kinetics, double phosphorylation, the Goldbeter–Koshland switch, and the mitogen activated protein kinase cascade. Overall, we report dramatic improvements by applying the tQSSA to the CME solver.
Resumo:
With the advent of live cell imaging microscopy, new types of mathematical analyses and measurements are possible. Many of the real-time movies of cellular processes are visually very compelling, but elementary analysis of changes over time of quantities such as surface area and volume often show that there is more to the data than meets the eye. This unit outlines a geometric modeling methodology and applies it to tubulation of vesicles during endocytosis. Using these principles, it has been possible to build better qualitative and quantitative understandings of the systems observed, as well as to make predictions about quantities such as ligand or solute concentration, vesicle pH, and membrane trafficked. The purpose is to outline a methodology for analyzing real-time movies that has led to a greater appreciation of the changes that are occurring during the time frame of the real-time video microscopy and how additional quantitative measurements allow for further hypotheses to be generated and tested.
Resumo:
We introduce a genetic programming (GP) approach for evolving genetic networks that demonstrate desired dynamics when simulated as a discrete stochastic process. Our representation of genetic networks is based on a biochemical reaction model including key elements such as transcription, translation and post-translational modifications. The stochastic, reaction-based GP system is similar but not identical with algorithmic chemistries. We evolved genetic networks with noisy oscillatory dynamics. The results show the practicality of evolving particular dynamics in gene regulatory networks when modelled with intrinsic noise.
Resumo:
This study investigated the Kinaesthetic Fusion Effect (KFE) first described by Craske and Kenny in 1981. The current study did not replicate these findings following a change in the reporting method used by participants. Participants did not perceive any reduction in the sagittal separation of a button pressed by the index finger of one arm and a probe touching the other, following repeated exposure to the tactile stimuli present on both unseen arms. This study’s failure to replicate the widely-cited KFE as described by Craske et al. (1984) suggests that it may be contingent on several aspects of visual information, especially the availability of a specific visual reference, the role of instructions regarding gaze direction, and the potential use of a line of sight strategy when referring felt positions to an interposed surface. In addition, a foreshortening effect was found; this may result from a line-of-sight judgment and represent a feature of the reporting method used. Finally, this research will benefit future studies that require participants to report the perceived locations of the unseen limbs.
Resumo:
Gait recognition approaches continue to struggle with challenges including view-invariance, low-resolution data, robustness to unconstrained environments, and fluctuating gait patterns due to subjects carrying goods or wearing different clothes. Although computationally expensive, model based techniques offer promise over appearance based techniques for these challenges as they gather gait features and interpret gait dynamics in skeleton form. In this paper, we propose a fast 3D ellipsoidal-based gait recognition algorithm using a 3D voxel model derived from multi-view silhouette images. This approach directly solves the limitations of view dependency and self-occlusion in existing ellipse fitting model-based approaches. Voxel models are segmented into four components (left and right legs, above and below the knee), and ellipsoids are fitted to each region using eigenvalue decomposition. Features derived from the ellipsoid parameters are modeled using a Fourier representation to retain the temporal dynamic pattern for classification. We demonstrate the proposed approach using the CMU MoBo database and show that an improvement of 15-20% can be achieved over a 2D ellipse fitting baseline.
Resumo:
Continuous user authentication with keystroke dynamics uses characters sequences as features. Since users can type characters in any order, it is imperative to find character sequences (n-graphs) that are representative of user typing behavior. The contemporary feature selection approaches do not guarantee selecting frequently-typed features which may cause less accurate statistical user-representation. Furthermore, the selected features do not inherently reflect user typing behavior. We propose four statistical based feature selection techniques that mitigate limitations of existing approaches. The first technique selects the most frequently occurring features. The other three consider different user typing behaviors by selecting: n-graphs that are typed quickly; n-graphs that are typed with consistent time; and n-graphs that have large time variance among users. We use Gunetti’s keystroke dataset and k-means clustering algorithm for our experiments. The results show that among the proposed techniques, the most-frequent feature selection technique can effectively find user representative features. We further substantiate our results by comparing the most-frequent feature selection technique with three existing approaches (popular Italian words, common n-graphs, and least frequent ngraphs). We find that it performs better than the existing approaches after selecting a certain number of most-frequent n-graphs.
Resumo:
The uncertain and dynamic nature of International Construction Joint Venture (ICJV) performance is evolved with many critical factors which lead to make partner relationships more complex in respect of making decisions to maintain a cohesive environment. Addressing to the fact, a generic system dynamics performance model for ICJV is developed by integrating a number variables as to get an overall impact on performance of ICJV and to make effective decisions based on that. In order to formulate and validate the model both structurally and behaviourally, both qualitative and quantitative data are gathered by conducting intensive interviews from two ICJVs in Thailand. After conducting intensive simulations of model, three major problems are identified related to negative value gap, low productivity in construction and high rate of ineffective information sharing of both ICJVs. Several policies are suggested and integrated application of these policies provides a maximum improvement to performance of the ICJV.
Resumo:
Fixed-wing aircraft equipped with downward pointing cameras and/or LiDAR can be used for inspecting approximately piecewise linear assets such as oil-gas pipelines, roads and power-lines. Automatic control of such aircraft is important from a productivity and safety point of view (long periods of precision manual flight at low-altitude is not considered reasonable from a safety perspective). This paper investigates the effect of any unwanted coupling between guidance and autopilot loops (typically caused by unmodeled delays in the aircraft’s response), and the specific impact of any unwanted dynamics on the performance of aircraft undertaking inspection of piecewise linear corridor assets (such as powerlines). Simulation studies and experimental flight tests are used to demonstrate the benefits of a simple compensator in mitigating the unwanted lateral oscillatory behaviour (or coupling) that is caused by unmodeled time constants in the aircraft dynamics.
Resumo:
A general mistrust within the contactor and subcontractor companies has identified one of the significant barriers to derive benefits from true downstream supply chain integration. Using the general theory of trust in inter-organizational relations and conducting interviews, this research discusses factors that influence development of trust and cooperation in contractor– subcontractor relationships in construction projects. System dynamics is the simulation method is selected in this theory-building effort, based on qualitative data collected from two projects of a construction company in Thailand. Performance, permeability and system based trust are found to make significant contributions toward parties’ trust level. Three strategic policies such as best value contracting, management of subcontractors as internal team and semi project partnering approach are recommended to stimulate the trust factors as well as cooperative long term relationship.
Resumo:
Research on expertise, talent identification and development has tended to be mono-disciplinary, typically adopting geno-centric or environmentalist positions, with an overriding focus on operational issues. In this thesis, the validity of dualist positions on sport expertise is evaluated. It is argued that, to advance understanding of expertise and talent development, a shift towards a multidisciplinary and integrative science focus is necessary, along with the development of a comprehensive multidisciplinary theoretical rationale. Dynamical systems theory is utilised as a multidisciplinary theoretical rationale for the succession of studies, capturing how multiple interacting constraints can shape the development of expert performers. Phase I of the research examines experiential knowledge of coaches and players on the development of fast bowling talent utilising qualitative research methodology. It provides insights into the developmental histories of expert fast bowlers, as well as coaching philosophies on the constraints of fast bowling expertise. Results suggest talent development programmes should eschew the notion of common optimal performance models and emphasize the individual nature of pathways to expertise. Coaching and talent development programmes should identify the range of interacting constraints that impinge on the performance potential of individual athletes, rather than evaluating current performance on physical tests referenced to group norms. Phase II of this research comprises three further studies that investigate several of the key components identified as important for fast bowling expertise, talent identification and development extrapolated from Phase I of this research. This multidisciplinary programme of work involves a comprehensive analysis of fast bowling performance in a cross-section of the Cricket Australia high performance pathways, from the junior, emerging and national elite fast bowling squads. Briefly, differences were found in trunk kinematics associated with the generation of ball speed across the three groups. These differences in release mechanics indicated the functional adaptations in movement patterns as bowlers’ physical and anatomical characteristics changed during maturation. Second to the generation of ball speed, the ability to produce a range of delivery types was highlighted as a key component of expertise in the qualitative phase. The ability of athletes to produce consistent results on different surfaces and in different environments has drawn attention to the challenge of measuring consistency and flexibility in skill assessments. Examination of fast bowlers in Phase II demonstrated that national bowlers can make adjustments to the accuracy of subsequent deliveries during performance of a cricket bowling skills test, and perform a range of delivery types with increased accuracy and consistency. Finally, variability in selected delivery stride ground reaction force components in fast bowling revealed the degenerate nature of this complex multi-articular skill where the same performance outcome can be achieved with unique movement strategies. Utilising qualitative and quantitative methodologies to examine fast bowling expertise, the importance of degeneracy and adaptability in fast bowling has been highlighted alongside learning design that promotes dynamic learning environments.
Resumo:
An SEI metapopulation model is developed for the spread of an infectious agent by migration. The model portrays two age classes on a number of patches connected by migration routes which are used as host animals mature. A feature of this model is that the basic reproduction ratio may be computed directly, using a scheme that separates topography, demography, and epidemiology. We also provide formulas for individual patch basic reproduction numbers and discuss their connection with the basic reproduction ratio for the system. The model is applied to the problem of spatial spread of bovine tuberculosis in a possum population. The temporal dynamics of infection are investigated for some generic networks of migration links, and the basic reproduction ratio is computed—its value is not greatly different from that for a homogeneous model. Three scenarios are considered for the control of bovine tuberculosis in possums where the spatial aspect is shown to be crucial for the design of disease management operations
Resumo:
Building an efficient and an effective search engine is a very challenging task. In this paper, we present the efficiency and effectiveness of our search engine at the INEX 2009 Efficiency and Ad Hoc Tracks. We have developed a simple and effective pruning method for fast query evaluation, and used a two-step process for Ad Hoc retrieval. The overall results from both tracks show that our search engine performs very competitively in terms of both efficiency and effectiveness.
Resumo:
The success of many knowledge-intensive industries depends on creative projects that lie at the heart of their logic of production. The temporality of such projects, however, is an issue that is insufficiently understood. To address this, we study the perceived time frame of teams that work on creative projects and its effects on project dynamics. An experiment with 267 managers assigned to creative project teams with varying time frames demonstrates that compared to creative project teams with a relatively longer time frame, project teams with a shorter time frame focus more on the immediate present, are less immersed in their task, and utilize a more heuristic mode of information processing. Furthermore, we find that time frame moderates the negative effect of team conflict on team cohesion. These results are consistent with our theory that the temporary nature of creative projects shapes different time frames among project participants, and that it is this time frame that is an important predictor of task and team processes.