206 resultados para FOPID Controller


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Establishing a persistent presence in the ocean with an Autonomous Underwater Vehicle capable of observing temporal variability of large-scale ocean processes requires a unique sensor platform. In this paper, we examine the utility of Lagrangian profiling floats for such extended deployments. We propose a strategy that utilizes ocean model predictions to facilitate a basic level of autonomy to achieve general control of this minimally-actuated underwater vehicle. We extend experimentally validated techniques for utilising ocean current models to control under-actuated autonomous underwater vehicles by presenting this investigation into the application of these methods on profiling floats. With the appropriate vertical actuation, and utilising spatiotemporal variations in water speed and direction, we show that broad controllability results can be met. First, we apply an A* planner to a local controllability map generated from predictions of ocean currents. This computes a path between start and goal waypoints that has the highest likelihood of successful execution over a given duration. The computed depth plan is generated with a model predictive controller, and selects the depths for the vehicle so that ambient currents guide it toward the goal. Mission constraints are included to simulate and motivate a practical data collection mission. Results are presented in simulation for a mission off the coast of Los Angeles, CA USA, that show surprising results in the ability of a drifting vehicle to maintain a prescribed course and reach a desired location.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The potential of multiple distribution static synchronous compensators (DSTATCOMs) to improve the voltage profile of radial distribution networks has been reported in the literature by few authors. However, the operation of multiple DSTATCOMs across a distribution feeder may introduce control interactions and/or voltage instability. This study proposes a control scheme that alleviates interactions among controllers and enhances proper reactive power sharing among DSTATCOMs. A generalised mathematical model is presented to analyse the interactions among any number of DSTATCOMs in the network. The criterion for controller design is developed by conducting eigenvalue analysis on this mathematical model. The proposed control scheme is tested in time domain on a sample radial distribution feeder installed with multiple DSTATCOMs and test results are presented.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper describes system identification, estimation and control of translational motion and heading angle for a cost effective open-source quadcopter — the MikroKopter. The dynamics of its built-in sensors, roll and pitch attitude controller, and system latencies are determined and used to design a computationally inexpensive multi-rate velocity estimator that fuses data from the built-in inertial sensors and a low-rate onboard laser range finder. Control is performed using a nested loop structure that is also computationally inexpensive and incorporates different sensors. Experimental results for the estimator and closed-loop positioning are presented and compared with ground truth from a motion capture system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents a feasible 3D collision avoidance approach for fixed-wing unmanned aerial vehicles (UAVs). The proposed strategy aims to achieve the desired relative bearing in the horizontal plane and relative elevation in the vertical plane so that the host aircraft is able to avoid collision with the intruder aircraft in 3D. The host aircraft will follow a desired trajectory in the collision avoidance course and resume the pre-arranged trajectory after collision is avoided. The approaching stopping condition is determined for the host aircraft to trigger an evasion maneuver to avoid collision in terms of measured heading. A switching controller is designed to achieve the spatial collision avoidance strategy. Simulation results demonstrate that the proposed approach can effectively avoid spatial collision, making it suitable for integration into flight control systems of UAVs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper proposes a nonlinear H_infinity controller for stabilization of velocities, attitudes and angular rates of a fixed-wing unmanned aerial vehicle (UAV) in a windy environment. The suggested controller aims to achieve a steady-state flight condition in the presence of wind gusts such that the host UAV can be maneuvered to avoid collision with other UAVs during cruise flight with safety guarantees. This paper begins with building a proper model capturing flight aerodynamics of UAVs. Then a nonlinear controller is developed with gust attenuation and rapid response properties. Simulations are conducted for the Shadow UAV to verify performance of the proposed con- troller. Comparative studies with the proportional-integral-derivative (PID) controllers demonstrate that the proposed controller exhibits great performance improvement in a gusty environment, making it suitable for integration into the design of flight control systems for cruise flight of UAVs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents a new approach to the design of a rough fuzzy controller for the control loop of the SVC (static VAR system) in a two area power system for stability enhancement with particular emphasis on providing effective damping for oscillatory instabilities. The performances of the rough fuzzy and the conventional fuzzy controller are compared with that of the conventional PI controller for a variety of transient disturbances, highlighting the effectiveness of the rough fuzzy controller in damping the inter-area oscillations. The effect of the rough fuzzy controller in improving the CCT (critical clearing time) of the two area system is elaborated in this paper as well.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A new control method for battery storage to maintain acceptable voltage profile in autonomous microgrids is proposed in this article. The proposed battery control ensures that the bus voltages in the microgrid are maintained during disturbances such as load change, loss of micro-sources, or distributed generations hitting power limit. Unlike the conventional storage control based on local measurements, the proposed method is based on an advanced control technique, where the reference power is determined based on the voltage drop profile at the battery bus. An artificial neural network based controller is used to determine the reference power needed for the battery to hold the microgrid voltage within regulation limits. The pattern of drop in the local bus voltage during power imbalance is used to train the controller off-line. During normal operation, the battery floats with the local bus voltage without any power injection. The battery is charged or discharged during the transients with a high gain feedback loop. Depending on the rate of voltage fall, it is switched to power control mode to inject the reference power determined by the proposed controller. After a defined time period, the battery power injection is reduced to zero using slow reverse-droop characteristics, ensuring a slow rate of increase in power demand from the other distributed generations. The proposed control method is simulated for various operating conditions in a microgrid with both inertial and converter interfaced sources. The proposed battery control provides a quick load pick up and smooth load sharing with the other micro-sources in a disturbance. With various disturbances, maximum voltage drop over 8% with conventional energy storage is reduced within 2.5% with the proposed control method.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Power system operation and planning are facing increasing uncertainties especially with the deregulation process and increasing demand for power. Probabilistic power system stability assessment and probabilistic power system planning have been identified by EPRI as one of the important trends in power system operations and planning. Probabilistic small signal stability assessment studies the impact of system parameter uncertainties on system small disturbance stability characteristics. Researches in this area have covered many uncertainties factors such as controller parameter uncertainties and generation uncertainties. One of the most important factors in power system stability assessment is load dynamics. In this paper, composite load model is used to consider the uncertainties from load parameter uncertainties impact on system small signal stability characteristics. The results provide useful insight into the significant stability impact brought to the system by load dynamics. They can be used to help system operators in system operation and planning analysis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper focuses on the implementation of the TS (Tagaki-Sugino) fuzzy controller for the active power and the DC capacitor voltage control of the Doubly Fed Induction Generator (DFIG) based wind generator. DFIG system is represented by a third-order model where electromagnetic transients of the stator are neglected. The effectiveness of the TS-fuzzy controller on the rotor speed oscillations and the DC capacitor voltage variations of the DFIG damping controller on converter ratings of the DFIG system is also investigated. The results of the time domain simulation studies are presented to elucidate the effectiveness of the TS-fuzzy controller compared with conventional PI controller in the DFIG system. The proposed TS-fuzzy controller can improve the fault ride through capability of DFIG compared to the conventional PI controller

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents a novel power control strategy that decouples the active and reactive power for a synchronous generator connected to a power network. The proposed control paradigm considers the capacitance of the transmission line along with its resistance and reactance as-well. Moreover the proposed controller takes into account all cases of R-X relationships, thus allowing it to function in Virtual Power Plant (VPP) structures which operate at both medium voltage (MV) and low voltage (LV) levels. The independent control of active and reactive power is achieved through rotational transformations of the terminal voltages and currents at the synchronous generator's output. This paper details the control technique by first presenting the mathematical and electrical network analysis of the methodology and then successfully implementing the control using MATLAB-SIMULINK simulation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The numerical solution of stochastic differential equations (SDEs) has been focused recently on the development of numerical methods with good stability and order properties. These numerical implementations have been made with fixed stepsize, but there are many situations when a fixed stepsize is not appropriate. In the numerical solution of ordinary differential equations, much work has been carried out on developing robust implementation techniques using variable stepsize. It has been necessary, in the deterministic case, to consider the "best" choice for an initial stepsize, as well as developing effective strategies for stepsize control-the same, of course, must be carried out in the stochastic case. In this paper, proportional integral (PI) control is applied to a variable stepsize implementation of an embedded pair of stochastic Runge-Kutta methods used to obtain numerical solutions of nonstiff SDEs. For stiff SDEs, the embedded pair of the balanced Milstein and balanced implicit method is implemented in variable stepsize mode using a predictive controller for the stepsize change. The extension of these stepsize controllers from a digital filter theory point of view via PI with derivative (PID) control will also be implemented. The implementations show the improvement in efficiency that can be attained when using these control theory approaches compared with the regular stepsize change strategy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Several approaches have been introduced in the literature for active noise control (ANC) systems. Since the filtered-x least-mean-square (FxLMS) algorithm appears to be the best choice as a controller filter, researchers tend to improve performance of ANC systems by enhancing and modifying this algorithm. This paper proposes a new version of the FxLMS algorithm, as a first novelty. In many ANC applications, an on-line secondary path modeling method using white noise as a training signal is required to ensure convergence of the system. As a second novelty, this paper proposes a new approach for on-line secondary path modeling on the basis of a new variable-step-size (VSS) LMS algorithm in feed forward ANC systems. The proposed algorithm is designed so that the noise injection is stopped at the optimum point when the modeling accuracy is sufficient. In this approach, a sudden change in the secondary path during operation makes the algorithm reactivate injection of the white noise to re-adjust the secondary path estimate. Comparative simulation results shown in this paper indicate the effectiveness of the proposed approach in reducing both narrow-band and broad-band noise. In addition, the proposed ANC system is robust against sudden changes of the secondary path model.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper proposes a self-tuning feedforward active noise control (ANC) system with online secondary path modeling. The step-size parameters of the controller and modeling filters have crucial rule on the system performance. In literature, these parameters are adjusted by trial-and-error. In other words, they are manually initialized before system starting, which require performing extensive experiments to ensure the convergence of the system. Hence there is no guarantee that the system could perform well under different situations. In the proposed method, the appropriate values for the step-sizes are obtained automatically. Computer simulation results indicate the effectiveness of the proposed method.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Several approaches have been introduced in literature for active noise control (ANC) systems. Since FxLMS algorithm appears to be the best choice as a controller filter, researchers tend to improve performance of ANC systems by enhancing and modifying this algorithm. This paper proposes a new version of FxLMS algorithm. In many ANC applications an online secondary path modelling method using a white noise as a training signal is required to ensure convergence of the system. This paper also proposes a new approach for online secondary path modelling in feedfoward ANC systems. The proposed algorithm stops injection of the white noise at the optimum point and reactivate the injection during the operation, if needed, to maintain performance of the system. Benefiting new version of FxLMS algorithm and not continually injection of white noise makes the system more desirable and improves the noise attenuation performance. Comparative simulation results indicate effectiveness of the proposed approach.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper proposes a new method for online secondary path modeling in feedback active noise control (ANC) systems. In practical cases, the secondary path is usually time varying. For these cases, online modeling of secondary path is required to ensure convergence of the system. In literature the secondary path estimation is usually performed offline, prior to online modeling, where in the proposed system there is no need for using offline estimation. The proposed method consists of two steps: a noise controller which is based on an FxLMS algorithm, and a variable step size (VSS) LMS algorithm which is used to adapt the modeling filter with the secondary path. In order to increase performance of the algorithm in a faster convergence and accurate performance, we stop the VSS-LMS algorithm at the optimum point. The results of computer simulation shown in this paper indicate effectiveness of the proposed method.