121 resultados para Equations, Cubic.
Resumo:
Background: Paediatric onset inflammatory bowel disease (IBD) may cause alterations in energy requirements and invalidate the use of standard prediction equations. Our aim was to evaluate four commonly used prediction equations for resting energy expenditure (REE) in children with IBD. Methods: Sixty-three children had repeated measurements of REE as part of a longitudinal research study yielding a total of 243 measurements. These were compared with predicted REE from Schofield, Oxford, FAO/WHO/UNU, and Harris-Benedict equations using the Bland-Altman method. Results: Mean (±SD) age of the patients was 14.2 (2.4) years. Mean measured REE was 1566 (336) kcal per day compared with 1491 (236), 1441 (255), 1481 (232), and 1435 (212) kcal per day calculated from Schofield, Oxford, FAO/WHO/UNU, and Harris-Benedict, respectively. While the Schofield equation demonstrated the least difference between measured and predicted REE, it, along with the other equations tested, did not perform uniformly across all subjects, indicating greater errors at either end of the spectrum of energy expenditure. Smaller differences were found for all prediction equations for Crohn's disease compared with ulcerative colitis. Conclusions: Of the commonly used equations, the equation of Schofield should be used in pediatric patients with IBD when measured values are not able to be obtained. (Inflamm Bowel Dis 2010;) Copyright © 2010 Crohn's & Colitis Foundation of America, Inc.
Resumo:
The photocatalytic ability of cubic Bi1.5ZnNb1.5O7 (BZN) pyrochlore for the decolorization of an acid orange 7 (AO7) azo dye in aqueous solution under ultraviolet (UV) irradiation has been investigated for the first time. BZN catalyst powders prepared using low temperature sol-gel and higher temperature solid-state methods have been evaluated and their reaction rates have been compared.The experimental band gap energy has been estimated from the optical absorption edge and has been used as reference for theoretical calculations. The electronic band structure of BZN has been investigated using first-principles density functional theory (DFT) calculations for random, completely and partially ordered solid solutions of Zn cations in both the A and B sites of the pyrochlore structure.The nature of the orbitals in the valence band (VB) and the conduction band (CB) has been identified and the theoretical band gap energy has been discussed in terms of the DFT model approximations.
Resumo:
Bi1.5ZnTa1.5O7 (BZT) has been synthesized using an alkoxide based sol-gel reaction route. The evolution of the phases produced from the alkoxide precursors and their properties have been characterized as function of temperature using a combination of thermogravimetric analysis (TGA) coupled with mass spectrometry (MS), infrared emission spectrometry (IES), X-ray diffraction (XRD), ultraviolet and visible (UV-Vis) spectroscopy, Raman spectroscopy, and N2 adsorption/desorption isotherms. The lowest sintering temperature (600∘C) to obtain phase pure BZT powders with high surface area (14.5m2/g) has been determined from the thermal decomposition and phase analyses.The photocatalytic activity of the BZT powders has been tested for the decolorization of organic azo-dye and found to be photoactive under UV irradiation.The electronic band structure of the BZT has been investigated using density functional theory (DFT) calculations to determine the band gap energy (3.12 eV) and to compare it with experimental band gap (3.02 eV at 800∘C) from optical absorptionmeasurements. An excellent match is obtained for an assumption of Zn cation substitutions at specifically ordered sites in the BZT structure.
Resumo:
We investigate methods for data-based selection of working covariance models in the analysis of correlated data with generalized estimating equations. We study two selection criteria: Gaussian pseudolikelihood and a geodesic distance based on discrepancy between model-sensitive and model-robust regression parameter covariance estimators. The Gaussian pseudolikelihood is found in simulation to be reasonably sensitive for several response distributions and noncanonical mean-variance relations for longitudinal data. Application is also made to a clinical dataset. Assessment of adequacy of both correlation and variance models for longitudinal data should be routine in applications, and we describe open-source software supporting this practice.
Resumo:
Objective To discuss generalized estimating equations as an extension of generalized linear models by commenting on the paper of Ziegler and Vens "Generalized Estimating Equations. Notes on the Choice of the Working Correlation Matrix". Methods Inviting an international group of experts to comment on this paper. Results Several perspectives have been taken by the discussants. Econometricians have established parallels to the generalized method of moments (GMM). Statisticians discussed model assumptions and the aspect of missing data Applied statisticians; commented on practical aspects in data analysis. Conclusions In general, careful modeling correlation is encouraged when considering estimation efficiency and other implications, and a comparison of choosing instruments in GMM and generalized estimating equations, (GEE) would be worthwhile. Some theoretical drawbacks of GEE need to be further addressed and require careful analysis of data This particularly applies to the situation when data are missing at random.
Resumo:
Selecting an appropriate working correlation structure is pertinent to clustered data analysis using generalized estimating equations (GEE) because an inappropriate choice will lead to inefficient parameter estimation. We investigate the well-known criterion of QIC for selecting a working correlation Structure. and have found that performance of the QIC is deteriorated by a term that is theoretically independent of the correlation structures but has to be estimated with an error. This leads LIS to propose a correlation information criterion (CIC) that substantially improves the QIC performance. Extensive simulation studies indicate that the CIC has remarkable improvement in selecting the correct correlation structures. We also illustrate our findings using a data set from the Madras Longitudinal Schizophrenia Study.
Resumo:
We propose an iterative estimating equations procedure for analysis of longitudinal data. We show that, under very mild conditions, the probability that the procedure converges at an exponential rate tends to one as the sample size increases to infinity. Furthermore, we show that the limiting estimator is consistent and asymptotically efficient, as expected. The method applies to semiparametric regression models with unspecified covariances among the observations. In the special case of linear models, the procedure reduces to iterative reweighted least squares. Finite sample performance of the procedure is studied by simulations, and compared with other methods. A numerical example from a medical study is considered to illustrate the application of the method.
Resumo:
The method of generalized estimating equation-, (GEEs) has been criticized recently for a failure to protect against misspecification of working correlation models, which in some cases leads to loss of efficiency or infeasibility of solutions. However, the feasibility and efficiency of GEE methods can be enhanced considerably by using flexible families of working correlation models. We propose two ways of constructing unbiased estimating equations from general correlation models for irregularly timed repeated measures to supplement and enhance GEE. The supplementary estimating equations are obtained by differentiation of the Cholesky decomposition of the working correlation, or as score equations for decoupled Gaussian pseudolikelihood. The estimating equations are solved with computational effort equivalent to that required for a first-order GEE. Full details and analytic expressions are developed for a generalized Markovian model that was evaluated through simulation. Large-sample ".sandwich" standard errors for working correlation parameter estimates are derived and shown to have good performance. The proposed estimating functions are further illustrated in an analysis of repeated measures of pulmonary function in children.
Resumo:
Statistical methods are often used to analyse commercial catch and effort data to provide standardised fishing effort and/or a relative index of fish abundance for input into stock assessment models. Achieving reliable results has proved difficult in Australia's Northern Prawn Fishery (NPF), due to a combination of such factors as the biological characteristics of the animals, some aspects of the fleet dynamics, and the changes in fishing technology. For this set of data, we compared four modelling approaches (linear models, mixed models, generalised estimating equations, and generalised linear models) with respect to the outcomes of the standardised fishing effort or the relative index of abundance. We also varied the number and form of vessel covariates in the models. Within a subset of data from this fishery, modelling correlation structures did not alter the conclusions from simpler statistical models. The random-effects models also yielded similar results. This is because the estimators are all consistent even if the correlation structure is mis-specified, and the data set is very large. However, the standard errors from different models differed, suggesting that different methods have different statistical efficiency. We suggest that there is value in modelling the variance function and the correlation structure, to make valid and efficient statistical inferences and gain insight into the data. We found that fishing power was separable from the indices of prawn abundance only when we offset the impact of vessel characteristics at assumed values from external sources. This may be due to the large degree of confounding within the data, and the extreme temporal changes in certain aspects of individual vessels, the fleet and the fleet dynamics.
Resumo:
The method of generalised estimating equations for regression modelling of clustered outcomes allows for specification of a working matrix that is intended to approximate the true correlation matrix of the observations. We investigate the asymptotic relative efficiency of the generalised estimating equation for the mean parameters when the correlation parameters are estimated by various methods. The asymptotic relative efficiency depends on three-features of the analysis, namely (i) the discrepancy between the working correlation structure and the unobservable true correlation structure, (ii) the method by which the correlation parameters are estimated and (iii) the 'design', by which we refer to both the structures of the predictor matrices within clusters and distribution of cluster sizes. Analytical and numerical studies of realistic data-analysis scenarios show that choice of working covariance model has a substantial impact on regression estimator efficiency. Protection against avoidable loss of efficiency associated with covariance misspecification is obtained when a 'Gaussian estimation' pseudolikelihood procedure is used with an AR(1) structure.
Resumo:
The article describes a generalized estimating equations approach that was used to investigate the impact of technology on vessel performance in a trawl fishery during 1988-96, while accounting for spatial and temporal correlations in the catch-effort data. Robust estimation of parameters in the presence of several levels of clustering depended more on the choice of cluster definition than on the choice of correlation structure within the cluster. Models with smaller cluster sizes produced stable results, while models with larger cluster sizes, that may have had complex within-cluster correlation structures and that had within-cluster covariates, produced estimates sensitive to the correlation structure. The preferred model arising from this dataset assumed that catches from a vessel were correlated in the same years and the same areas, but independent in different years and areas. The model that assumed catches from a vessel were correlated in all years and areas, equivalent to a random effects term for vessel, produced spurious results. This was an unexpected finding that highlighted the need to adopt a systematic strategy for modelling. The article proposes a modelling strategy of selecting the best cluster definition first, and the working correlation structure (within clusters) second. The article discusses the selection and interpretation of the model in the light of background knowledge of the data and utility of the model, and the potential for this modelling approach to apply in similar statistical situations.
Resumo:
Troxel, Lipsitz, and Brennan (1997, Biometrics 53, 857-869) considered parameter estimation from survey data with nonignorable nonresponse and proposed weighted estimating equations to remove the biases in the complete-case analysis that ignores missing observations. This paper suggests two alternative modifications for unbiased estimation of regression parameters when a binary outcome is potentially observed at successive time points. The weighting approach of Robins, Rotnitzky, and Zhao (1995, Journal of the American Statistical Association 90, 106-121) is also modified to obtain unbiased estimating functions. The suggested estimating functions are unbiased only when the missingness probability is correctly specified, and misspecification of the missingness model will result in biases in the estimates. Simulation studies are carried out to assess the performance of different methods when the covariate is binary or normal. For the simulation models used, the relative efficiency of the two new methods to the weighting methods is about 3.0 for the slope parameter and about 2.0 for the intercept parameter when the covariate is continuous and the missingness probability is correctly specified. All methods produce substantial biases in the estimates when the missingness model is misspecified or underspecified. Analysis of data from a medical survey illustrates the use and possible differences of these estimating functions.
Resumo:
James (1991, Biometrics 47, 1519-1530) constructed unbiased estimating functions for estimating the two parameters in the von Bertalanffy growth curve from tag-recapture data. This paper provides unbiased estimating functions for a class of growth models that incorporate stochastic components and explanatory variables. a simulation study using seasonal growth models indicates that the proposed method works well while the least-squares methods that are commonly used in the literature may produce substantially biased estimates. The proposed model and method are also applied to real data from tagged rack lobsters to assess the possible seasonal effect on growth.
Resumo:
We consider the problem of estimating a population size from successive catches taken during a removal experiment and propose two estimating functions approaches, the traditional quasi-likelihood (TQL) approach for dependent observations and the conditional quasi-likelihood (CQL) approach using the conditional mean and conditional variance of the catch given previous catches. Asymptotic covariance of the estimates and the relationship between the two methods are derived. Simulation results and application to the catch data from smallmouth bass show that the proposed estimating functions perform better than other existing methods, especially in the presence of overdispersion.