180 resultados para Energy efficient buildings
Resumo:
This paper discusses challenges to developers of a national Life Cycle Inventory (LCI) database on which to base assessment of building environmental impacts and a key to development of a fully integrated eco-design tool created for automated eco-efficiency assessment of commercial building design direct from 3D CAD. The scope of this database includes Australian and overseas processing burdens involved in acquiring, processing, transporting, fabricating, finishing and using metals, masonry, timber, glazing, ceramics, plastics, fittings, composites and coatings. Burdens are classified, calculated and reported for all flows of raw materials, fuels, energy and emissions to and from the air, soil and water associated with typical products and services in building construction, fitout and operation. The aggregated life cycle inventory data provides the capacity to generate environmental impact assessment reports based on accepted performance indicators. Practitioners can identify hot spots showing high environmental burdens of a proposed design and drill down to report on specific building components. They can compare assessments with case studies and operational estimates to assist in eco-efficient design of a building, fitout and operation.
Resumo:
This thesis is a documented energy audit and long term study of energy and water reduction in a ghee factory. Global production of ghee exceeds 4 million tonnes annually. The factory in this study refines dairy products by non-traditional centrifugal separation and produces 99.9% pure, canned, crystallised Anhydrous Milk Fat (Ghee). Ghee is traditionally made by batch processing methods. The traditional method is less efficient, than centrifugal separation. An in depth systematic investigation was conducted of each item of major equipment including; ammonia refrigeration, a steam boiler, canning equipment, pumps, heat exchangers and compressed air were all fine-tuned. Continuous monitoring of electrical usage showed that not every initiative worked, others had pay back periods of less than a year. In 1994-95 energy consumption was 6,582GJ and in 2003-04 it was 5,552GJ down 16% for a similar output. A significant reduction in water usage was achieved by reducing the airflow in the refrigeration evaporative condensers to match the refrigeration load. Water usage has fallen 68% from18ML in 1994-95 to 5.78ML in 2003-04. The methods reported in this thesis could be applied to other industries, which have similar equipment, and other ghee manufacturers.
Resumo:
As climate change will entail new conditions for the built environment, the thermal behaviour of air-conditioned office buildings may also change. Using building computer simulations, the impact of warmer weather is evaluated on the design and performance of air-conditioned office buildings in Australia, including the increased cooling loads and probable indoor temperature increases due to a possibly undersized air-conditioning system, as well as the possible change in energy use. It is found that existing office buildings would generally be able to adapt to the increasing warmth of year 2030 Low and High scenarios projections and the year 2070 Low scenario projection. However, for the 2070 High scenario, the study indicates that the existing office buildings in all capital cities of Australia would suffer from overheating problems. For existing buildings designed for current climate conditions, it is shown that there is a nearly linear correlation between the increase of average external air temperature and the increase of building cooling load. For the new buildings designed for warmer scenarios, a 28-59% increase of cooling capacity under the 2070 High scenario would be required.
Resumo:
Global warming can have a significant impact on the building thermal environment and energy performance. Because greenhouse gas concentrations are still continuing to increase, this warming process will continue and may accelerate. Adaptation to global warming is therefore emerging as one of the key requirements for buildings. This requires all the existing and new buildings not only to perform and operate satisfactorily in the new environment but also to satisfy the environmental performance criteria of sustainability. Through a parametric study using the building simulation technique, this paper investigates the adaptation potential of changing the building internal load densities to the future global warming. Case studies for office buildings in major Australian capital cities are presented. Based on the results of parametric study, possible adaptation strategies are also proposed and evaluated.
Resumo:
The dynamic interaction between building systems and external climate is extremely complex, involving a large number of difficult-to-predict variables. In order to study the impact of climate change on the built environment, the use of building simulation techniques together with forecast weather data are often necessary. Since most of building simulation programs require hourly meteorological input data for their thermal comfort and energy evaluation, the provision of suitable weather data becomes critical. In this paper, the methods used to prepare future weather data for the study of the impact of climate change are reviewed. The advantages and disadvantages of each method are discussed. The inherent relationship between these methods is also illustrated. Based on these discussions and the analysis of Australian historic climatic data, an effective framework and procedure to generate future hourly weather data is presented. It is shown that this method is not only able to deal with different levels of available information regarding the climate change, but also can retain the key characters of a “typical” year weather data for a desired period.
Resumo:
Foam-filled conical tubes have recently emerged as efficient energy absorbing devices to mitigate the adverse effects of impacts. The primary aim of this thesis was to generate research and design information on the impact and energy absorption response of empty and foam-filled conical tubes, and to facilitate their application in energy absorbing systems under axial and oblique loading conditions representative of those typically encountered in crashworthiness and impact applications. Finite element techniques supported by experiments and existing results were used in the investigation. Major findings show that the energy absorption response can be effectively controlled by varying geometry and material parameters. A useful empirical formula was developed for providing engineering designers with an initial estimate of the load ratio and hence energy absorption performances of these devices. It was evident that foam-filled conical tubes enhance the energy absorption capacity and stabilise the crush response for both axial and oblique impact loading without a significant increase in the initial peak load. This is practically beneficial when higher kinetic energy needs to be absorbed, thus reducing the impact force transmitted to the protected structure and occupants. Such tubes also increase and maintain the energy absorption capacity under global bending as well as minimise the reduction of energy absorption capacity with increasing load angle. Furthermore, the results also highlight the feasibility of adding a foam-filled conical tube as a supplementary device in energy absorbing systems, since the overall energy absorption performance of such systems can be favourably enhanced by only including a relatively small energy absorbing device. Above all, the results demonstrate the superior performance of foam-filled conical tube for mitigating impact energy in impact and crashworthiness applications.
Resumo:
This paper argues a model of complex system design for sustainable architecture within a framework of entropy evolution. The spectrum of sustainable architecture consists of the efficient use of energy and material resource in life-cycle of buildings, the active involvement of the occupants in micro-climate control within buildings, and the natural environmental context. The interactions of the parameters compose a complex system of sustainable architectural design, of which the conventional linear and fragmented design technologies are insufficient to indicate holistic and ongoing environmental performance. The complexity theory of dissipative structure states a microscopic formulation of open system evolution, which provides a system design framework for the evolution of building environmental performance towards an optimization of sustainability in architecture.
Resumo:
Zero energy buildings (ZEB) and zero energy homes (ZEH) are a current hot topic globally for policy makers (what are the benefits and costs), designers (how do we design them), the construction industry (can we build them), marketing (will consumers buy them) and researchers (do they work and what are the implications). This paper presents initial findings from actual measured data from a 9 star (as built), off-ground detached family home constructed in south-east Queensland in 2008. The integrated systems approach to the design of the house is analysed in each of its three main goals: maximising the thermal performance of the building envelope, minimising energy demand whilst maintaining energy service levels, and implementing a multi-pronged low carbon approach to energy supply. The performance outcomes of each of these stages are evaluated against definitions of Net Zero Carbon / Net Zero Emissions (Site and Source) and Net Zero Energy (onsite generation v primary energy imports). The paper will conclude with a summary of the multiple benefits of combining very high efficiency building envelopes with diverse energy management strategies: a robustness, resilience, affordability and autonomy not generally seen in housing.
Resumo:
Mechanical control systems have become a part of our everyday life. Systems such as automobiles, robot manipulators, mobile robots, satellites, buildings with active vibration controllers and air conditioning systems, make life easier and safer, as well as help us explore the world we live in and exploit it’s available resources. In this chapter, we examine a specific example of a mechanical control system; the Autonomous Underwater Vehicle (AUV). Our contribution to the advancement of AUV research is in the area of guidance and control. We present innovative techniques to design and implement control strategies that consider the optimization of time and/or energy consumption. Recent advances in robotics, control theory, portable energy sources and automation increase our ability to create more intelligent robots, and allows us to conduct more explorations by use of autonomous vehicles. This facilitates access to higher risk areas, longer time underwater, and more efficient exploration as compared to human occupied vehicles. The use of underwater vehicles is expanding in every area of ocean science. Such vehicles are used by oceanographers, archaeologists, geologists, ocean engineers, and many others. These vehicles are designed to be agile, versatile and robust, and thus, their usage has gone from novelty to necessity for any ocean expedition.
Resumo:
This paper is concerned with the design and implementation of control strategies onto a test-bed vehicle with six degrees-of-freedom. We design our trajectories to be efficient in time and in power consumption. Moreover, we also consider cases when actuator failure can arise and discuss alternate control strategies in this situation. Our calculations are supplemented by experimental results.
Resumo:
This paper argues a model of adaptive design for sustainable architecture within a framework of entropy evolution. The spectrum of sustainable architecture consists of efficient use of energy and material resource in the life-cycle of buildings, active involvement of the occupants into micro-climate control within the building, and the natural environment as the physical context. The interactions amongst all the parameters compose a complex system of sustainable architecture design, of which the conventional linear and fragmented design technologies are insufficient to indicate holistic and ongoing environmental performance. The latest interpretation of the Second Law of Thermodynamics states a microscopic formulation of an entropy evolution of complex open systems. It provides a design framework for an adaptive system evolves for the optimization in open systems, this adaptive system evolves for the optimization of building environmental performance. The paper concludes that adaptive modelling in entropy evolution is a design alternative for sustainable architecture.
Resumo:
This paper argues a model of open system design for sustainable architecture, based on a thermodynamics framework of entropy as an evolutionary paradigm. The framework can be simplified to stating that an open system evolves in a non-linear pattern from a far-from-equilibrium state towards a non-equilibrium state of entropy balance, which is a highly ordered organization of the system when order comes out of chaos. This paper is work in progress on a PhD research project which aims to propose building information modelling for optimization and adaptation of buildings environmental performance as an alternative sustainable design program in architecture. It will be used for efficient distribution and consumption of energy and material resource in life-cycle buildings, with the active involvement of the end-users and the physical constraints of the natural environment.
Resumo:
Effective strategies for the design of effi cient and environmentally sensitive buildings require a close collaboration between architects and engineers in the design of the building shell and environmental control systems at the outset of projects. However, it is often not practical for engineers to be involved early on in the design process. It is therefore essential that architects be able to perform preliminary energy analyses to evaluate their proposed designs prior to the major building characteristics becoming fi xed. Subsequently, a need exists for a simplifi ed energy design tool for architects. This paper discusses the limitations of existing analysis software in supporting early design explorations and proposes a framework for the development of a tool that provides decision support by permitting architects to quickly assess the performance of design alternatives.
Resumo:
Building insulation is often used to reduce the conduction heat transfer through building envelope. With a higher level of insulation (or a greater R-value), the less the conduction heat would transfer through building envelope. In this paper, using building computer simulation techniques, the effects of building insulation levels on the thermal and energy performance of a sample air-conditioned office building in Australia are studied. It is found that depending on the types of buildings and the climates of buildings located, increasing the level of building insulation will not always bring benefits in energy saving and thermal comfort, particularly for internal-load dominated office buildings located in temperate/tropical climates. The possible implication of building insulation in face of global warming has also been examined. Compared with the influence of insulation on building thermal performance, the influence on building energy use is relatively small.