126 resultados para Electromyographic fatigue threshold
Resumo:
Background Cancer-related fatigue (CRF) is the most common and distressing symptom reported by breast cancer survivors. The primary aim of this study was to translate and evaluate psychometrically for the first time a Spanish version of the Piper Fatigue Scale-Revised (S-PFS-R). Methods One hundred and eleven women with stage I–IIIA breast cancer who had completed their primary cancer therapy in the previous 6 months with the exception of hormone therapy completed the S-PFS-R, the Profile of Mood States (POMS) Fatigue (POMS-F) and Vigor subscales (POMS-V), and bilateral force handgrip testing. Data analysis included test–retest reliability, construct validity, criterion-related validity, and exploratory factor analyses. Results Test–retest reliability was satisfactory (r > 0.86), and all subscales showed moderate to high construct validity estimates [corrected item-subscale correlations (Pearson r = ≥ 0.65)]. The exploratory factor analysis revealed four dimensions with 75.5 % of the common variance explained. The S-PFS-R total score positively correlated with the POMS-F subscale (r = 0.50–0.78) and negatively with the POMS-V subscale (r = −0.13 to −0.44) confirming criterion-related validity. Negative correlations among force handgrip testing, subscales, and total scores were weak (r = −0.26 to −0.29). Conclusions The Spanish version of PFS-R shows satisfactory psychometric properties in a sample of breast cancer survivors. This is the first study to translate the PFS-R into Spanish and further testing is warranted.
Resumo:
Background The hand is an element of great importance to humans, as it enables us to have different grips. Its analysis, based on an accelerometer and electromyography, is critical in order to determine its operation. The processing and analysis of variables obtained by these devices offer a different approach in functional assessment. Therefore, knowledge of the muscles and elements of the hand in the grip force will offer a better approach for different interventions. Method The functionality of the hand of seven healthy subjects was parameterized and synchronized in real time based on grip force. The AcceleGlove was used to register accelerometric (fingers and palm) values and the Mega ME6000 was used for the surface electromyography and maximum voluntary contraction for the hand and forearm muscles. A computer script based on “R” and MATLAB software was developed to enable the correct interpretation of the main variables (variation of acceleration and maximum peak value of electromyography). Results The muscles of greater activity in grip was found in the hypothenar region (0.313 ± 0.148%) and the flexor ulnaris carpi (0.360 ± 0.118%), based on maximum voluntary contraction. Reference values in the module vector of the palm have proved an essential element for the identification of the movement phases. The ring and index fingers were the elements with the greatest variation of acceleration in the movement phases. Conclusion: Parameterization of the force grip and fragmentation of the registered data has been made possible due to the development of a technical procedure.
Resumo:
Do you know how to drive a train? If you don’t you probably believe that you have a fair idea of what it’s all about. Forget what you know, or think you know. Trains are heavy and fast but they feel and handle like driving on ice so they take a long time to stop. The braking distances for a typical piece of track are unlike anything you will have experienced before. With that in mind, imagine you were driving with a bit of dew, or grease, or millipede over the track. You would lose traction and slip everywhere. To avoid this, you would need a compensatory driving strategy. You could drive more slowly, or brake sooner, or change how you brake. Your experience and intuition would lead the way. Folks, this is why it’s called “driving by the seat of your pants”...
Resumo:
It is unknown if fatigue measures like the Multidimensional Fatigue Symptom Inventory-Short Form (MFSI-SF; Stein, Jacobsen, Blanchard, & Thors, 2004) appropriately describe fatigue in Hispanics or if acculturation plays a role in fatigue. This study compared fatigue in community samples of Hispanics and Anglos. The MFSI-SF and pertinent questionnaires were administered to adults in San Diego County via telephone survey. Some differences in fatigue were observed in initial comparisons between Hispanics and Anglos, including when acculturation was considered. When age and education were controlled, Hispanics reported less general fatigue than Anglos, regardless of acculturation status, p = < .01. Exploratory factor analyses indicate that the MFSI-SF general-fatigue subscale was problematic for Hispanics. Implications, limitations, and future directions are discussed.
Resumo:
Background Matrix metalloproteinase-2 (MMP-2) is an endopeptidase that facilitates extracellular matrix remodeling and molecular regulation, and is implicated in tumor metastasis. Type I collagen (Col I) regulates the activation of MMP-2 through both transcriptional and post-transcriptional means; however gaps remain in our understanding of the involvement of collagen-binding ?1 integrins in collagen-stimulated MMP-2 activation. Methods Three ?1 integrin siRNAs were used to elucidate the involvement of ?1 integrins in the Col I-induced MMP-2 activation mechanism. ?1 integrin knockdown was analyzed by quantitative RT-PCR, Western Blot and FACS analysis. Adhesion assay and collagen gel contraction were used to test the biological effects of ?1 integrin abrogation. MMP-2 activation levels were monitored by gelatin zymography. Results All three ?1 integrin siRNAs were efficient at ?1 integrin knockdown and FACS analysis revealed commensurate reductions of integrins ?2 and ?3, which are heterodimeric partners of ?1, but not ?V, which is not. All three ?1 integrin siRNAs inhibited adhesion and collagen gel contraction, however only the siRNA showing the greatest magnitude of ?1 knockdown inhibited Col I-induced MMP-2 activation and reduced the accompanying upregulation of MT1-MMP, suggesting a dose response threshold effect. Re-transfection with codon-swapped ?1 integrin overcame the reduction in MMP-2 activation induced by Col-1, confirming the ?1 integrin target specificity. MMP-2 activation induced by TPA or Concanavalin A (Con A) was not inhibited by ?1 integrin siRNA knockdown. Conclusion Together, the data reveals that strong abrogation of ?1 integrin is required to block MMP-2 activation induced by Col I, which may have implications for the therapeutic targeting of ?1 integrin.
Resumo:
Messenger RNAs (mRNAs) can be repressed and degraded by small non-coding RNA molecules. In this paper, we formulate a coarsegrained Markov-chain description of the post-transcriptional regulation of mRNAs by either small interfering RNAs (siRNAs) or microRNAs (miRNAs). We calculate the probability of an mRNA escaping from its domain before it is repressed by siRNAs/miRNAs via cal- culation of the mean time to threshold: when the number of bound siRNAs/miRNAs exceeds a certain threshold value, the mRNA is irreversibly repressed. In some cases,the analysis can be reduced to counting certain paths in a reduced Markov model. We obtain explicit expressions when the small RNA bind irreversibly to the mRNA and we also discuss the reversible binding case. We apply our models to the study of RNA interference in the nucleus, examining the probability of mRNAs escaping via small nuclear pores before being degraded by siRNAs. Using the same modelling framework, we further investigate the effect of small, decoy RNAs (decoys) on the process of post-transcriptional regulation, by studying regulation of the tumor suppressor gene, PTEN : decoys are able to block binding sites on PTEN mRNAs, thereby educing the number of sites available to siRNAs/miRNAs and helping to protect it from repression. We calculate the probability of a cytoplasmic PTEN mRNA translocating to the endoplasmic reticulum before being repressed by miRNAs. We support our results with stochastic simulations
Resumo:
Background: Driver fatigue contributes to 15-30% of crashes, however it is difficult to objectively measure. Fatigue mitigation relies on driver self-moderation, placing great importance on the necessity for road safety campaigns to engage with their audience. Popular self-archiving website YouTube.com is a relatively unused source of public perceptions. Method: A systematic YouTube.com search (videos uploaded 2/12/09 - 2/12/14) was conducted using driver fatigue related search terms. 442 relevant videos were identified. In-vehicle footage was separated for further analysis. Video reception was quantified in terms of number of views, likes, comments, dislikes and times duplicated. Qualitative analysis of comments was undertaken to identify key themes. Results: 4.2% (n=107) of relevant uploaded videos contained in-vehicle footage. Three types of videos were identified: (1) dashcam footage (n=82); (2) speaking directly to the camera - vlogs (n=16); (3) passengers filming drivers (n=9). Two distinct types of comments emerged, those directly relating to driver fatigue and those more broadly about the video or its uploader. Driver fatigue comments included: attribution of behaviour cause, emotion experienced when watching the video and personal advice on staying awake while driving. Discussion: In-vehicle footage related to driver fatigue is prevalent on YouTube.com and is actively engaged with by viewers. Comments were mixed in terms of criticism and sympathy for drivers. Willingness to share advice on staying awake suggests driver fatigue may be seen as a common yet controllable occurrence. This project provides new insight into driver fatigue perception, which may be considered by safety authorities when designing education campaigns.
Resumo:
Background Calcification is commonly believed to be associated with cardiovascular disease burden. But whether or not the calcifications have a negative effect on plaque vulnerability is still under debate. Methods and Results Fatigue rupture analysis and the fatigue life were used to evaluate the rupture risk. An idealized baseline model containing no calcification was first built. Based on the baseline model, we investigated the influence of calcification on rupture path and fatigue life by adding a circular calcification and changing its location within the fibrous cap area. Results show that 84.0% of calcified cases increase the fatigue life up to 11.4%. For rupture paths 10D far from the calcification, the life change is negligible. Calcifications close to lumen increase more fatigue life than those close to the lipid pool. Also, calcifications in the middle area of fibrous cap increase more fatigue life than those in the shoulder area. Conclusion Calcifications may play a positive role in the plaque stability. The influence of the calcification only exists in a local area. Calcifications close to lumen may be influenced more than those close to lipid pool. And calcifications in the middle area of fibrous cap are seemly influenced more than those in the shoulder area.
Resumo:
Identification of vulnerable plaque pre-rupture is extremely important for patient risk stratification. The mechanism of plaque rupture is still not entirely clear, but it is thought to be a process involving multiple factors. From a biomechanical viewpoint, plaque rupture is usually seen as a structural failure when the plaque cannot resist the hemodynamic blood pressure and shear stress exerted on it. However, the cardiovascular system is naturally a cyclical hemodynamic environment, and myocardial infarction can be a symptomatically quiescent but potentially progressive process when plaque ruptures at stresses much lower than its strength. Therefore, fatigue accumulation is a possible mechanism for plaque rupture. In this study, a crack growth model was developed, and the previously-mentioned hypothesis was tested by conducting a comparative study between 18 symptomatic and 16 asymptomatic patients with carotid stenosis.
Resumo:
Rupture of atheromatous plaque is the major cause of stroke or heart attack. Considering that the cardiovascular system is a classic fatigue environment, plaque rupture was treated as a chronic fatigue crack growth process in this study. Fracture mechanics theory was introduced to describe the stress status at the crack tip and Paris' law was used to calculate the crack growth rate. The effect of anatomical variation of an idealized plaque cross-section model was investigated. The crack initiation was considered to be either at the maximum circumferential stress location or at any other possible locations around the lumen. Although the crack automatically initialized at the maximum circumferential stress location usually propagated faster than others, it was not necessarily the most critical location where the fatigue life reached its minimum. We found that the fatigue life was minimum for cracks initialized in the following three regions: the midcap zone, the shoulder zone, and the backside zone. The anatomical variation has a significant influence on the fatigue life. Either a decrease in cap thickness or an increase in lipid pool size resulted in a significant decrease in fatigue life. Comparing to the previously used stress analysis, this fatigue model provides some possible explanations of plaque rupture at a low stress level in a pulsatile cardiovascular environment, and the method proposed here may be useful for further investigation of the mechanism of plaque rupture based on in vivo patient data.
Resumo:
BACKGROUND: Rupture of atheromatous plaque in the carotid artery often leads to thrombosis and subsequent stroke. The mechanism of plaque rupture is not entirely clear but is thought to be a multi-factorial process involving thinning and weakening of the fibrous cap and biomechanical stress as the trigger leading to plaque rupture. As the cardiovascular system is a classic fatigue environment, the weakening of plaque leading to rupture may be a fatigue process, which is a symptomatically quiescent but potentially progressive failure process. In this study, we used a fatigue analysis based on in vivo magnetic resonance imaging (MRI) to investigate the rupture initiation location, crack propagation path and fatigue life within plaques of asymptomatic and symptomatic individuals. METHODS: Forty non-consecutive subjects (20 symptomatic and 20 asymptomatic) underwent high-resolution multi-sequence in vivo MRI of the carotid bifurcation. Fatigue analysis was performed based on the plaque geometry derived from in vivo MRI of the carotid artery at the point of maximum stenosis. Paris’ Law in fracture mechanics is adopted to determine the fatigue crack growth rate. Incremental crack propagation was dynamically simulated based on stress distributions. Plaque initiation location, crack propagation path and fatigue cycle of symptomatic and asymptomatic individuals were compared. RESULTS: Cracks were often found to begin at the lumen wall at areas of stress concentration. The preferred rupture direction was radial from the lumen center. The crack initially advanced slowly but accelerated as it developed, depending on plaque morphology. The fatigue cycles of symptomatic plaques were significantly less than those in the asymptomatic group (2.3 ± 0.9 vs 3.1 ± 0.7 (x106); p = 0.003). CONCLUSIONS: The number of cycles to rupture in symptomatic patients was higher than those predicted in asymptomatic patients by fatigue analysis, suggesting the possibility that plaques with a less fatigue life may be more prone to be symptomatic and rupture. If further validated by large-scale longitudinal studies, fatigue analysis based on high resolution in vivo MRI could potentially act as a useful tool for risk assessment of carotid atheroma.
Resumo:
Sit-to-stand (STS) tests measure the ability to get up from a chair, reproducing an important component of daily living activity. As this functional task is essential for human independence, STS performance has been studied in the past decades using several methods, including electromyography. The aim of this study was to measure muscular activity and fatigue during different repetitions and speeds of STS tasks using surface electromyography in lower-limb and trunk muscles. This cross-sectional study recruited 30 healthy young adults. Average muscle activation, percentage of maximum voluntary contraction, muscle involvement in motion and fatigue were measured using surface electrodes placed on the medial gastrocnemius (MG), biceps femoris (BF), vastus medialis of the quadriceps (QM), the abdominal rectus (AR), erector spinae (ES), rectus femoris (RF), soleus (SO) and the tibialis anterior (TA). Five-repetition STS, 10-repetition STS and 30-second STS variants were performed. MG, BF, QM, ES and RF muscles showed differences in muscle activation, while QM, AR and ES muscles showed significant differences in MVC percentage. Also, significant differences in fatigue were found in QM muscle between different STS tests. There was no statistically significant fatigue in the BF, MG and SO muscles of the leg although there appeared to be a trend of increasing fatigue. These results could be useful in describing the functional movements of the STS test used in rehabilitation programs, notwithstanding that they were measured in healthy young subjects.
Resumo:
Fatigue of the steel in rails continues to be of major concern to heavy haul track owners despite careful selection and maintenance of rails. The persistence of fatigue is due in part to the erroneous assumption that the maximum loads on, and stresses in, the rails are predictable. Recent analysis of extensive wheel impact detector data from a number of heavy haul tracks has shown that the most damaging forces are in fact randomly distributed with time and location and can be much greater than generally expected. Large- scale Monte-Carlo simulations have been used to identify rail stresses caused by actual, measured distributions of wheel-rail forces on heavy haul tracks. The simulations show that fatigue failure of the rail foot can occur in situations which would be overlooked by traditional analyses. The most serious of these situations are those where track is accessed by multiple operators and in situations where there is a mix of heavy haul, general freight and/or passenger traffic. The least serious are those where the track is carrying single-operator-owned heavy haul unit trains. The paper shows how using the nominal maximum axle load of passing traffic, which is the key issue in traditional analyses, is insufficient and must be augmented with consideration of important operational factors. Ignoring such factors can be costly.
Sleep-related crash characteristics: Implications for applying a fatigue definition to crash reports
Resumo:
Sleep-related (SR) crashes are an endemic problem the world over. However, police officers report difficulties in identifying sleepiness as a crash contributing factor. One approach to improving the sensitivity of SR crash identification is by applying a proxy definition post hoc to crash reports. To identify the prominent characteristics of SR crashes and highlight the influence of proxy definitions, ten years of Queensland (Australia) police reports of crashes occurring in ≥100 km/h speed zones were analysed. In Queensland, two approaches are routinely taken to identifying SR crashes. First, attending police officers identify crash causal factors; one possible option is ‘fatigue/fell asleep’. Second, a proxy definition is applied to all crash reports. Those meeting the definition are considered SR and added to the police-reported SR crashes. Of the 65,204 vehicle operators involved in crashes 3449 were police-reported as SR. Analyses of these data found that male drivers aged 16–24 years within the first two years of unsupervised driving were most likely to have a SR crash. Collision with a stationary object was more likely in SR than in not-SR crashes. Using the proxy definition 9739 (14.9%) crashes were classified as SR. Using the proxy definition removes the findings that SR crashes are more likely to involve males and be of high severity. Additionally, proxy defined SR crashes are no less likely at intersections than not-SR crashes. When interpreting crash data it is important to understand the implications of SR identification because strategies aimed at reducing the road toll are informed by such data. Without the correct interpretation, funding could be misdirected. Improving sleepiness identification should be a priority in terms of both improvement to police and proxy reporting.
Resumo:
Steel roofs made of thin cold-formed steel roof claddings and battens are widely used in low-rise residential and industrial buildings all around the world. However, they suffer from premature localised pull-through failures in the batten to rafter connections during high wind events. A recent study proposed a suitable design equation for the pull-through failures of thin steel roof battens. However, it was limited to static wind uplift loading. In contrast, most cyclone/storm events produce cyclic wind uplift forces on roofs for a significantly long period, thus causing premature fatigue pull-through failures at lower loads. Therefore, a series of constant amplitude cyclic load tests was conducted on small and full scale roof panels made of a commonly used industrial roof batten to develop their S-N curves. A series of multi-level cyclic tests, including the recently introduced low-high-low (LHL) fatigue loading test, was also undertaken to simulate a design cyclone. Using the S-N curves, the static pull-through design capacity equation was modified to include the effects of fatigue. Applicability of Miner’s rule was evaluated in order to predict the fatigue damage caused by multi-level cyclic tests such as the LHL test, and suitable modifications were made. The combined use of the modified Miner’s law and the S-N curve of roof battens will allow a conservative estimation of the fatigue design capacity of roof battens without conducting the LHL tests simulating a design cyclone. This paper presents the details of this study, and the results.