409 resultados para Edward Lansdale
Resumo:
A software tool (DRONE) has been developed to evaluate road traffic noise in a large area with the consideration of network dynamic traffic flow and the buildings. For more precise estimation of noise in urban network where vehicles are mainly in stop and go running conditions, vehicle sound power level (for acceleration/deceleration cruising and ideal vehicle) is incorporated in DRONE. The calculation performance of DRONE is increased by evaluating the noise in two steps of first estimating the unit noise database and then integrating it with traffic simulation. Details of the process from traffic simulation to contour maps are discussed in the paper and the implementation of DRONE on Tsukuba city is presented
Analytical modeling and sensitivity analysis for travel time estimation on signalized urban networks
Resumo:
This paper presents a model for estimation of average travel time and its variability on signalized urban networks using cumulative plots. The plots are generated based on the availability of data: a) case-D, for detector data only; b) case-DS, for detector data and signal timings; and c) case-DSS, for detector data, signal timings and saturation flow rate. The performance of the model for different degrees of saturation and different detector detection intervals is consistent for case-DSS and case-DS whereas, for case-D the performance is inconsistent. The sensitivity analysis of the model for case-D indicates that it is sensitive to detection interval and signal timings within the interval. When detection interval is integral multiple of signal cycle then it has low accuracy and low reliability. Whereas, for detection interval around 1.5 times signal cycle both accuracy and reliability are high.
Resumo:
The aim of this paper is to explore a new approach to obtain better traffic demand (Origin-Destination, OD matrices) for dense urban networks. From reviewing existing methods, from static to dynamic OD matrix evaluation, possible deficiencies in the approach could be identified: traffic assignment details for complex urban network and lacks in dynamic approach. To improve the global process of traffic demand estimation, this paper is focussing on a new methodology to determine dynamic OD matrices for urban areas characterized by complex route choice situation and high level of traffic controls. An iterative bi-level approach will be used, the Lower level (traffic assignment) problem will determine, dynamically, the utilisation of the network by vehicles using heuristic data from mesoscopic traffic simulator and the Upper level (matrix adjustment) problem will proceed to an OD estimation using optimization Kalman filtering technique. In this way, a full dynamic and continuous estimation of the final OD matrix could be obtained. First results of the proposed approach and remarks are presented.
Resumo:
Typical daily decision-making process of individuals regarding use of transport system involves mainly three types of decisions: mode choice, departure time choice and route choice. This paper focuses on the mode and departure time choice processes and studies different model specifications for a combined mode and departure time choice model. The paper compares different sets of explanatory variables as well as different model structures to capture the correlation among alternatives and taste variations among the commuters. The main hypothesis tested in this paper is that departure time alternatives are also correlated by the amount of delay. Correlation among different alternatives is confirmed by analyzing different nesting structures as well as error component formulations. Random coefficient logit models confirm the presence of the random taste heterogeneity across commuters. Mixed nested logit models are estimated to jointly account for the random taste heterogeneity and the correlation among different alternatives. Results indicate that accounting for the random taste heterogeneity as well as inter-alternative correlation improves the model performance.
Resumo:
This paper presents a travel time prediction model and evaluates its performance and transferability. Advanced Travelers Information Systems (ATIS) are gaining more and more importance, increasing the need for accurate, timely and useful information to the travelers. Travel time information quantifies the traffic condition in an easy to understand way for the users. The proposed travel time prediction model is based on an efficient use of nearest neighbor search. The model is calibrated for optimal performance using Genetic Algorithms. Results indicate better performance by using the proposed model than the presently used naïve model.
Resumo:
This paper presents a methodology for estimation of average travel time on signalized urban networks by integrating cumulative plots and probe data. This integration aims to reduce the relative deviations in the cumulative plots due to midlink sources and sinks. During undersaturated traffic conditions, the concept of a virtual probe is introduced, and therefore, accurate travel time can be obtained when a real probe is unavailable. For oversaturated traffic conditions, only one probe per travel time estimation interval—360 s or 3% of vehicles traversing the link as a probe—has the potential to provide accurate travel time.
Resumo:
This paper studies the effect of rain on travel demand measured on the Tokyo Metropolitan Expressway (MEX). Rainfall data monitored by the Japan Meteorological Agency's meso-scale network of weather stations are used. This study found that travel demand decreases during rainy days and, in particular, larger reductions occur over the weekend. The effect of rainfall on the number of accidents recorded on 10 routes on the MEX is also analysed. Statistical testing shows that the average frequency of accidents, during periods of rainfall, is significantly different from the average frequency at other times.
Resumo:
This paper discusses the areawide Dynamic ROad traffic NoisE (DRONE) simulator, and its implementation as a tool for noise abatement policy evaluation. DRONE involves integrating a road traffic noise estimation model with a traffic simulator to estimate road traffic noise in urban networks. An integrated traffic simulation-noise estimation model provides an interface for direct input of traffic flow properties from simulation model to noise estimation model that in turn estimates the noise on a spatial and temporal scale. The output from DRONE is linked with a geographical information system for visual representation of noise levels in the form of noise contour maps.